% Uiy
.- q"\-ﬁ Y

I
n
“Ngg w‘ﬁ&;’

="
%

13
.;f}l
o

Forsattsblad till skriftlig
tentamen vid Linkopings Universitet

(fylls i av ansvarig)

Datum for tentamen 2010-05-25

Sal VALMAT

Tid 14-18

Kurskod TDDD48

Provkod TEN]
Kursnamn/bendmning Automatisk planering
Institution IDA

Antal uppgifter som 4

ingdr i tentamen B

Antal sidor pa tentamen 7

(inkl. forsittsbladet)

Jour/Kursansvarig

Martin Magnusson

Telefon under skrivtid

Besoker salen ca kl.

Kursadministrator
(namn + tfnnr + mailadress)

Anna Grabska Eklund
Ankn. 23 62, annek@ida.lin.se

Tillatna hjalpmedel

Ovrigt

(exempel niir resultat kan ses
pa webben, betygsgrinser,
visning, dvriga salar tentan gér
i m.m.)

Vilken typ av papper ska
anviandas, rutigt eller linjerat

Linjerat

Antal exemplar i pasen




1 Classical Plans (4 points)

We know the following:

e A classical plan 7 for & given planning problem instance is a sequence [a1,.. ., G}
of actions,

e A solution plan = for a given planning problem instance is redundant if there is
s proper subsequence of 7 that is also a solution for P. In other words, 7 is
redundant if it is possible to remove one or more actions from 7 in such a way that
the remaining actions, in their original order, still form a solution that achieves
the goal.

+ A solution plan = for a given planning problem instance is minimal if there is no
other solution for P that containg strictly fewer actions.

The standard logistics domain, where a set of packages should be transported to their
destinations, is defined in Appendix A. You should do the following:

a) Create a classical planning problem instance for this domain and show a solution 7
for this problem instance, such that 7 is redundant (and therefore not minimal},
Show clearly why the solution is redundant ~ in other words, show which actions
can be removed from the solution. (2 points)

b) Create 2 dlassical planning problem instance for this domain and show a solution n
for this problem instance, such that 7 is not redundant but still not minimal. Show
clearly why the solution is neither redundant nor minimal. (2 points)



2 State-Based Heuristics (6 points)

We have discussed the A, family of domain-independent admissible heuristics based on
delete relaxation. You will now have to apply your knowiedge about these heuristics to
the standard logistics domain, as defined in Appendix A. You may assume a classical
representation where the preconditions of an operator consist of a conjunction of positive
atoms.

You shouid:

a) Explain the basic principle of delete relazation. First, how is it applied to a plan-
ning domain — what actual changes are made in the domain? Second, how does this
affect the search space? In other words, how does the search space ofter applying
delete relaxation differ from the search space before delete relaxation was applied?
(2 points)

b) Explain the intuitive meaning of hy(s), where s is a state. (2 points)
¢) Generalize: Explain the intuitive meaning of A, (s) for m > 1. (1 point)

d) In general, heuristic functions are often intended to estimate the number of actions
required to reach the goal from a certain state. However, the estimate given by
the A, family of heuristics is often far lower than the true number of remaining
actions: hgz(s) might return the value 20 for a state s even if reaching the goal from
that state would require 1000 actions. Why s the heuristic still useful? In other
words, how can domain-independent search methods used in planning still make
use of these heuristic values to quickly find a path to the goal? (1 point)



3 Partial-Order Planning (6 points)

The figure below shows a partial plan generated by the PSP (Plan-Space Planuning)
procedure in the book, for the standard logistics domain defined in further detail in
Appendix A. The problem instance used for this figure is quite small, using only the
following objects:

package: pl, p2

truck: t1, t2

airplane: (none)

locasion: locl, loc?, locd, locd

airport: (none)

In the figure, effects are shown below each action, preconditions are shown above each
action, and causal links are indicated by dashed arrows. Precedence constraints between
actions are indicated by solid arrows and are not shown when there are also causal links
between the same actions.

_ init-action

a) List all threats in this fgure. Show exactly what is threatening what. (2 points)

b) For each of these threats, show at least one way in which it can be resolved.
(2 points)

¢) Show oll ways in which you can resolve the open goal at(tl,y) belonging to the ac-
tion drive-truck(tl,y,loc4) at the right hand side of the figure. You are not expected
to resolve any new flaws that this may lead to. (2 points)



4 Hierarchical Task Networks (4p)

We continue by defining an HTN (hierarchical task network) formulation of the logistics
domain. The assumption is that a logistics goal is represented through an initial task
network consisting of one or more non-primitive tasks of the form deliver(x, from, to),
where x is a package which is initially at from and should be delivered at to. In other
words, one possible initial network might be the following:

{deliver(packagel,loct loc2), deliver(package2,locl loc3), deliver(package3,loc3 loch))
You should:

e Specify a set of non-primitive tasks and methods that can be used to decompose
deliver(x, from, to) into subtasks, in a way that you eventually reach the predefined
primitive tasks.

We assume a TFD-like procedure is used (Total-order Forward Decomposition),
with totally ordered methods and no means of interleaving subtasks originating in
different parent tasks. The six operators defined for this domain in Appendix A
can be used as primitive tasks and do not have to be specified by you.

Since we use totally ordered methods, you are allowed to create inefficient solution
plans in the specific sense that trucks and airplanes only move a single package at
a time. However, solution plans must not include actions (primitive tasks) that
“do nothing”, such as driving from & location to the same location. (4 points)

Clarifications:

e For every new method you creste, you must specify which task it corresponds to,
which preconditions it has, and which sequence of parameterized subtasks it is
decornposed into.

o JSHOP?2 uses a somewhat different structure for tasks and methods compared to
the book. You may choose to use either of these structures, as long as it is indicated
clearly which one you use.

e As always, exact syntax (such as where parentheses are placed) is less important
than showing that you have understood the concepts involved. Feel free to add
explanations to clarify what the different parts of your definitions mean, if you are
uncertain whether you follow the correct syntax precisely.

¢ Hint: How do you deliver a package if the destination is in the same city? How
do you deliver it to a destination in another city? These are different ways of
delivering the package.



A The Logistics Domain

The standard logistics domain contains a set of peckages that should be transported
to their destinations. A package can be transported by truck between any two locations
in the same city, and by adrplane between special airport locations in different cities.
Since trucks cannot deliver packages directly to other cities, and airplanes cannot visit
arbitrary locations, delivering a packasge might require using a truck to move it to an
airport, using an afrplane to move it to another city and then once again using a truck
to get the package to its final destination.

We assume the following types of objects:
¢ thing, with subtypes package and vehicle
¢ package
e vehicle, with subtypes truck and airplane
¢ location, with subtype airport

A model of this domain may include the following operators. For Simple Task Network
planning, these operators correspond directly to primitive tasks.

» [oad-truck(package, truck, location) loads a package into a truck, given that they are
both at the same location. The truck can hold an arbitrary number of packages.

¢ unload-truck(package, truck, location) unloads & package from a truck in the current
location.

¢ load-plane{package, airplane, location) loads & package into a plane, given that they
are both at the same location. The plane can hold an arbitrary number of packages.

¢ unioad-plane(package, airplane, location) unloads a package from an airplane in the
current location,

e drive-truck(truck, location, location) drives a truck between locations in the same
city.

o fly-plane(plane, airport, airport) flies a plane between fwo airports in different cities.
We assume the following predicates are available:

e at(thingloc) — the package or vehicle thing is at the location loc. Note that a
package “at” & certain location cannot be not “in” & vehicle in the same state.

¢ in(x,vehicle) — the package x is in the given vehicle.
e same-city(locl,loc2) — the given locations are in the same city.
« location(x), airport(x), truck(x), airplane(x}, vehicle(x) — type predicates.

We can then define the operators more formally as shown on the following page:



load-truck({pkg, trk, loc)
Precondition: package(pkg) A truck(trk) A location{foc) A
at(pkg, loc) A at(trk, loc)
Effects: ~at{pkg, foc), in(pkg, trk)

load-airplane(pkg, plane, loc)
Precondition: package(pkg) A airplane(pfane) A location(loc) A
at{pkg, loc) A at(plane, loc)
Effects: —at(pkg, loc), in(pkg, plane)

unload-truck{pkg, trk, loc)
Precondition: package(pkg) A truck{irk) A location(foc) A
in(pkg, trk) A at(trk, loc)
Effects: —in(pkg, trk}, at(pkg, loc)

unload-airplane(pkg, plane, loc)
Precondition: package(pkg) A airplane(plane) A location{loc) A
in{pkg, plane} A at{plane, loc)
Effects: —in(pkg, plane), at(pkg, loc)

drive-truck(trk, from, to)
Precondition: truck(trk) A location(from) A location{to) A
at(trk, from)
Effects: —at(trk, from), at(trk, to)

fly-airplane(plane, from, to)
Precondition: airplane(plane) A airport(from} A airport(to) A
at(pfane, from)
Effects: —at(plane, from), at{plane, to)



