

Försättsblad till skriftlig tentamen vid Linköpings universitet

(fylls i av ansvarig)

Datum för tentamen	August 20, 2012			
Sal	TER /			
Tid	8-12			
Kurskod	TDDD41			
Provkod	TEN1			
Kursnamn/benämning	Data Mining – Clustering and Association Analysis			
Institution	IDA			
Antal uppgifter som	7			
ingår i tentamen				
Antal sidor på tentamen				
(inkl. försättsbladet)	3 + cover page			
Jour/Kursansvarig	Patrick Lambrix, Jose Pena			
Telefon under skrivtid	2605, 1651			
Besöker salen ca kl.	9.45, 10.45			
Kursadministratör	Carita Lilja, 1463, Carita.Lilja@liu.se			
(namn + tfnnr + mailadress)				
Tillåtna hjälpmedel	dictionary			
Övrigt	For a pass grade, you need half of the max points.			
(exempel när resultat kan ses på				
webben, betygsgränser, visning,				
övriga salar tentan går i m.m.)				
Vilken typ av papper ska				
användas, rutigt eller linjerat				
Antal exemplar i påsen	10			

Institutionen för datavetenskap Linköpings universitet

EXAM 732A31 and TDDD41 Data Mining – Clustering and Association Analysis August 20, 2012, 8-12

Teachers: Patrick Lambrix, José M Pena

Instructions:

- Start each question at a new page.
- Write at one side of a page.
- Write clearly.
- If you make assumptions about a question, that are not explicitly stated, you need to write these down. (These assumptions cannot change the exercise or question.)

Help: dictionary

GOOD LUCK!

1. Apriori algoritm (2p+1p+1p+1p+1p=6p)

- a. Explain the Apriori algorithm. You may want to give the algorithm's pseudocode.
- b. Sketch a proof of the correctness of the Apriori algorithm.
- Explain how and where we incorporate a monotonic constraint into the Apriori algorithm.
- d. Explain how and where we incorporate an antimonotonic constraint into the Apriori algorithm.
- e. What role does the Apriori algorithm play in the search for association rules?

2. FP grow algorithm (2p+1p+1p+1p=5p)

- a. Explain the FP grow algorithm. You may want to give the algorithm's pseudocode.
- b. Explain how and where we incorporate a monotonic constraint into the FP grow algorithm.
- Explain how and where we incorporate an antimonotonic constraint into the FP grow algorithm.
- d. What is the main advantage that the FP grow algorithm has over the Apriori algorithm?

3. Constraints (1p+1p+1p=3p)

- a. Give three examples of constraints that are monotone. Explain your answer.
- b. Give three examples of constraints that are antimonotone. Explain your answer.
- c. Give three examples of constraints that are neither monotone nor antimonotone but that are convertible monotone and convertible antimonotone (i.e. strongly convertible). Explain your answer.

4. Clustering by Partitioning (3p+1p+1p=5p)

- a. Run the k-means algorithm on the data set {0, 2, 3, 8, 9, 10} with k=2 and use as initial cluster centers 2 and 3. Show step-by-step results. Give the clusters and cluster centers in each step.
- b. What are the strengths and weaknesses of k-means?
- c. Which weakness of k-means is addressed by using medoids and how?

5. Hierarchical clustering (4p)

Describe the principles and ideas regarding BIRCH.

- Give a sketch of the algorithm.
- Explain Cluster Feature Vector. Given a cluster with the data points (1,2), (1,3) and (2,2), what is its cluster feature vector?
- Explain what a CF-tree is and how it is used in BIRCH.
- What parameters are used as input?

6. Density-based clustering (2p+1p+2p=5p)

- Describe the principles and ideas regarding the DBSCAN algorithm. In your description, make sure to give a sketch of the algorithm and to define core point, direct density-reachable, density-reachable, and density-connected.
- b. What is the main idea behind OPTICS?
- c. Describe the principles and ideas regarding the DENCLUE algorithm. In your description, make sure to define the important notions and define how clusters are formed. Also discuss whether arbitrary-shape clusters can be formed.

7. Distance measure (2p)

What is the distance between Item K and Item L?

A	В	С	D	E	F	G
Item K (0,10) Item L (0,30)		-	-		N N	5 no-value-available

Attribute A is interval-based and Euclidean distance is used.

Attribute B is interval-based and Manhattan distance is used.

Attributes C and D are binary symmetric variables.

Attributes E and F are binary asymmetric variables.

Attribute G is interval-based.