Examination Formal Languages and Automata Theory TDDD14 & TDDD85

(Formella Språk och Automatateori)

2015 - 06 - 03, 8.00 - 12.00

- 1. NOT ALL PROBLEMS ARE FOR BOTH COURSES. Pay attention to "only" comments.
- 2. Allowed help materials
 - A sheet of notes 2 sided A5 or 1 sided A4.
 The contents is up to you.
 The notes should be signed in the same way as the exam sheets and returned together with the exam.
 - English dictionary

Tillåtna hjälpmedel:

- Ett papper med valfria anteckningar 2 sidor A5 eller 1 sida A4. Anteckningarna ska signeras på samma sätt som tentamensarken och bifogas tentamen vid inlämnandet.
- Engelsk ordbok
- 3. You may answer in Swedish or English.
- 4. Total number of credits is 33. Limits:
 - 3: 16 p, 4: 22 p, 5: 28 p.
- 5. Jour (person on duty): Johannes Schmidt, tel. 07 25 72 18 03

GOOD LUCK!

- 4. (5p) For each of the following languages answer whether it is regular, context-free but not regular, or not context-free. (Here a brief explanation is sufficient).
 - (a) The set of the strings over $\{a, b, c\}$ with even number of b's, not containing a substring abc and with each a immediately preceded by b.
 - (b) $\{xyx \mid x, y \in \{a, b\}^*, |y| = 2\}$
 - (c) $\{0^j 1^k 0w \mid w \in \{0,1\}^*, 0 \le j < |w| k\}$
 - (d) $\{0^j 2^k w \mid w \in \{0,1\}^*, j > k > |w| > 0\}$
 - (e) The image of the latter language under the homomorphism h given by h(0) = a, h(1) = b, h(2) = a.
- 5. (5p) Which of the following statements are true, which are false? Why?
 - (a) There is a recursive language whose complement is not recursive.
 - (b) There is a recursively enumerable language whose complement is recursive.
 - (c) There exist deterministic finite automata M_1 , M_2 such that $L(M_1) \cup L(M_2) \neq L(R)$, for any regular expression R.
 - (d) If a language is generated by an unambiguous context-free grammar then it is accepted by a deterministic pushdown automaton.
 - (e) There exists a universal Turing Machine which halts on every input.

6. (3p) Only TDDD14

Explain the notions of a recursive language and a recursively enumerable language. Show that the intersection of two recursively enumerable languages is recursively enumerable.

7. (3p) Only TDDD85

Explain what it means that a context-free grammar is in Chomsky Normal Form. Write a context-free grammar in Chomsky Normal Form for the language from 1b.