Forsattsblad till skriftlig
tentamen vid Linképings Universitet

Datum for tentamen 2013-08-26
Sal p——

TER 3
Tid 14-18
Kurskod TDDC90
Provkod TEN1
Kursnamn/bendmning Programvarusikerhet
Institution IDA
Antal uppgifter som 9
ingar i tentamen
Antal sidor pa tentamen (inkl. |7
forsattsbladet)
Jour/Kursansvarig David Byers
Telefon under skrivtid 013-282821
Besoker salen ca kl. 15:30
Kursadministrator Madeleine Higer

(namn + tfnnr + mailadress)

282360, madha@ida.liu.se

Tillatna hjilpmedel

Inga




LiTH, Link&pings tekniska hogskola
IDA, Institutionen for datavetenskap
Nahid Shahmehri

Written exam
TDDC90 Software Security
2013-08-26

Permissible aids

Dictionary (printed, NOT electronic)

Teacher on duty
David Byers, 013-282821

Instructions and grading

You may answer in Swedish or English.

Your grade will depend on the total points you score on the exam. The maximum
number of points is 46. The following grading scale is preliminary and might be
adjusted during grading.

Grade 3 4 5
Points required 22 29 36




Question 1: Processes (4 points)

There are several development processes aimed at developing secure software. Name
one such process and explain in detail how it works and if it is used on its own or
together with any other development process (name which one!).

Question 2: Buffer overflows (6 points)
Explain the following compiler-based mechanisms to protect against buffer
overflows:

a) Stack canaries.

b) Reordering of local variables.

Your explanation must cover how the mechanism works, how it protects against
buffer overflows, and any potential limitations of the mechanism. Illustrate how each
mechanism alters the stack, and how these changes prevent exploiting buffer
overflows.

Question 3: Fuzz testing (6 points)

Consider an application that handles a communication protocol whose messages have
the following format:

Message type: 2 bytes

TLV count: 2 bytes (number of TLV records to follow)
Data: Sequence of TLV records
Checksum: CRC32 checksum of entire message

Each TLV record has the following format:

Type: 1 byte
Length: 2 bytes (length of data to follow)
Data: Variable length

There are two message types: send (1) and receive (2). If the message type is send,
then there must be two TLVs: filename (1) and data (16). The data in the filename
TLV must consist of alphanumeric characters only. The checksum must be correct, or
the message will be

Fuzz testing this application effectively poses several challenges beyond those of
fuzzing just one integer or string. Discuss what those challenges are and how they
could be solved.



Question 4: Risk (4 points)

When working with risks in a software security context, is it important to always
mitigate all risks or are there risks which should not be mitigated? What is a good way
of choosing which risks to mitigate (if not all of them)? Motivate your answers!

Question 5: Security requirements (2 points)

In a requirement specification you find the following requirement “There shall not be
any buffer overflow vulnerabilities in the code”. Explain what is wrong with this
requirement and why!

Question 6: Static analysis (6 points)

a) Explain briefly what static analysis is and what it is used for.
b) Give pros and cons (at least two each) for static analysis compared to testing.

¢) Give two examples of security vulnerabilities that can be discovered with
static analysis.

Question 7: Security modeling (8 points)

Assume there is a website on which students can search for courses and see what
other students think about a specific course. Without logging in to the website a
student can read course reviews written by other students. If logged in to the website a
student can also post their own reviews. A moderator can, when logged in, remove
any review on the website.

The infamous Dr Evil realizes that one of his courses has gotten bad reviews by his
students on the website described above. He decides to attack the website and remove
all negative reviews.

a) Draw a detailed misuse case describing the website, the normal usage of the
site (by students and the moderator), and Dr Evil’s attack against it! Be clear
about how the attack works in detail. Write down all assumptions you make.

(6p)

b) Draw an attack tree with the goal “Remove negative reviews from the course
website”. (2p)
Question 8: Secure software engineering (2 points)

Why is it important to consider security during the whole software development
lifecycle? Motivate!



Question 9: Vulnerabilities (8 points)

The function shown on the next page of this exam is a simple request handler for a
web application server. The request handler is called by the application server for
specific requests. You don’t need to be concerned about how this works.

This particular request handler is for file uploads. The request contains two important
parts: a path and data. Both can be accessed via a request object, which the request
handler gets from the application server.

The path indicates where to store the uploaded file. To prevent malicious users from
overwriting arbitrary files on the computer, the request handler prepends a document
root to the requested path. For example, if the request specified path /etc/passwd,
and the document root is /uploads, then the request handler will store the uploaded
data in the file /uploads/etc/passwd. It is important that no files are ever stored
outside the document root.

The data is the data to upload. It is assumed to be text encoded using ISO-8859-1,
which means that there is one byte per character, of which all eight bits are
significant. The request handler reads all the data into memory, converting one
character at a time to UCS-4, which uses exactly 32 bits per character. The converted
data is then written to the output file.

The request handler requires the session to be authenticated.
There are at least two vulnerabilities in the code.
For each vulnerability:

- Indicate the code that contains the vulnerability.

- Explain the input that could trigger the vulnerability (you do not need to
explain how to exploit it).

- Propose corrections to the code that would eliminate the vulnerability.

- Name and explain any mitigation techniques in the compiler, libraries or
operating system that could prevent the vulnerabilities from being exploited.

There are some extra notes on the various functions used in the code on the last page
of this exam.

Continues on next page



Code for question 9

int request_handler (struct http_request *sess) {
char anonymous;
char path[MAXPATHLEN] ;
int size;
char ¢, rootd;
FILE *in, *out;
uint32_t *buf, *tmp;

anonymous = is_anonymous (sess) ;
/* Check if the request is valid */
if (sess-»request == NULL)

return INVALID_REQUEST;

/* Place the document root into path */
strepy(path, document_root);

/* Set rootd to 1 if path is "/" */
rootd = (path([0] == '/' && path(1l] == '\0');

/* Check that root, request, null and possible extra "/" fits in path */
if (strlen(path) + strlen(sess->reguest) + rootd + 1 > MAXPATHLEN)
return INVALID REQUEST;

/* Now we know there is enough space in path. Perform the append */

if (rootd == 0)
strcat (path, "/"); /* Add a / if path is not "“/" */
strcat (path, sess->request); /* Append the request path */

/* Read, encode, and copy the input if the user is authorized */
if (!anonymous) {
size = atoi(http_get_header (sess, "content-length"));
buf = malloc(size * 4); /* Space for UCS-4 encoding */
tmp = buf; /* Save a copy of the pointer */

in = http_get_input_stream(sess);

while (size--) { /* Read at most size bytes */

¢ = fgetc(in); /* Get one character */

if (e == -1) /* End of file */

break; /* Terminate reading */

*tmp = latinl_to_ucsd(c); /* Convert character */

tmp += 1; /* Advance to next position */
}
fclose(in); /* Close the input */

size = atoi(http_get_header(sess, "content-length"));

out = fopen{path, "w"}; /* QOpen the output file */

fwrite(buf, 4, size, out); /* Write the entire buffer contents */
fclose(out) ; /* Close the output file */

free(buf); /* Free allocated memory */

return OK;
}

else
return UNAUTHORIZED;

Continues on next page



Notes on the code for those not very familiar with C

The code above uses some API functions and variables from the application server:
is_anonymous returns 1 if the request is anonymous (i.e. not authenticated).
http_get _header returns the content of the specified HTTP header.

http_get_input_stream returns a file pointer from which the handler can read the request
data. The file pointer returned by this function should be closed using fclose.

latinl_to_ucs4 converts a single character from IS0O-8859-1 encoding to UCS-4 encoding
(i.e. from one to four bytes).

document_root is a string guaranteed to be a valid path on the filesystem, and guaranteed to
be no more than MAXPATHLEN characters long.

INVALID_REQUEST, UNAUTHORIZED, and OK are constants that this function may
return.

struct http_request represents an HTTP request. The request field contains the path the
client has requested.

The code also uses the following standard C library functions:

malloc allocates memory on the heap. The parameter to malloc specifies how much memory
can be allocated. Memory allocated with malloc is returned to the heap using the free
function. When malloc fails to allocate sufficient memory, it returns NULL.

free frees allocated memory. It must never be called twice on the same pointer.

The fgetc function reads a single character from a file pointer. It returns an integer
representing the character, or -1 if there are no more characters to read.

strepy copies data to a destination from a source. It operates on null-terminated strings (i.e.
standard C strings). For example, to copy a string from a to b, call strepy(b,a). Both a and b
must be pointers to strings or be character arrays. If b contains the string “test”, then the
function will copy five bytes: the four characters and the null terminator.

strcat concatenates two strings. Like strcpy it operates on standard C strings. For example, to
place the contents of a at the end of b, call strcar(b,a). The resulting string will also be null
terminated.

strlen calculates the number of characters in a string. It does not count the null terminator.

atoi converts a string to an integer. If the string does not represent a valid integer, then its
behavior is undefined (it will probably return 0).

fwrite writes output to a file pointer. The call fivrite(buf,size,nitems,fp) writes nitems items of
size size from the memory that buf points to, to the file pointer fp.

fclose closes an open file pointer.

uint32_t is an integer datatype that occupies exactly 32 bits. char is an integer datatype that
represents an ASCII character; it occupies one byte (eight bits). FILE* is a file pointer, from
which functions such as fgete can read input.

MAXPATHLEN is the maximum length of a valid path name.

C handles arithmetic on pointers differently from arithmetic on integers. If p is a pointer to a
datatype that occupies n bytes, then the statement p += / will advance p to the next element —
i.e. increment it by n. In this example, pointer arithmetic is used to advance the tmp pointer
one element at a time from the start of buf up to the last element.



