LiTH, Linkopings tekniska hogskola
IDA, Institutionen for datavetenskap
Nahid Shahmehri

Written exam
TDDC90 Software Security
2013-03-25

Permissible aids

Dictionary (printed, NOT electronic)

Teacher on duty
David Byers, 013-282821

Instructions and grading

You may answer in Swedish or English.

Your grade will depend on the total points you score on the exam. The maximum
number of points is 46. The following grading scale is preliminary and might be
adjusted during grading.

Grade 3 4 5
Points required 22 29 36

Question 1: Processes (2 points)

Give an example of a software development process and explain in a few sentences
how security is included in the process (i.e. as part of the process, as a process of its
own or in any other way). If security is not included in the process, explain how you
would choose to include it and why you would do it that way.

Question 2: Integer overflows (6 points)

Integer overflows are a special case of arithmetic errors.

a) Explain what an integer overflow is, and how it works. Explain how integer
overflows can result in security vulnerabilities.

b) Give a concrete example of code containing an integer overflow that can be
exploited from a security point of view. Give at least one (set of) inputs that
will trigger the vulnerability.

Question 3: Fuzz testing (6 points)

Imagine that you are writing a fuzzer that can fuzz integers and strings, and your goal
is to find buffer errors.

a) Describe how you would chooses/generate the strings to test.
b) Describe how you could choose/generate the integers to test.

Be precise. From your answers it should be possible to derive which specific strings
and values that your fuzzer would generate. Motivate your answers!

Question 4: Risk (6 points)

You work at a small company developing an online game which is accessible to users
via a website. Users log in to the website with a username and password. It is possible
for users to buy additional equipment for their game characters. To do so, a user needs
to provide their credit card number.

a) Name two risks connected to the online game. If you could only mitigate one
of the risks, which one would you choose and why? State any assumptions you
make!

b) Name and explain two methods, frameworks or similar for risk analysis and/or
risk management. For each method, explain if it is suitable to use it in this
specific context. Why or why not? Again, state your assumptions!

Question 5: Security requirements (4 points)

Explain what a security requirement is and where in the software lifecycle it is
suitable to handle security requirements. Give an example of a methodology for
security requirements engineering and briefly explain it.

Question 6: Static analysis (6 points)

a) Explain what it means that a static analysis is sound.
b) What can you say about soundness of industrial static analysis tools?

c) Describe how static analysis differs from dynamic analysis and testing.

Question 7: Security modeling (6 points)

a) What is an attack tree and what is it used for? Sometimes, cost is added to the
branches of the attack tree. Do you think this is a good idea or not? Why or
why not?

b) Explain briefly what a misuse case is. [s it possible to create a misuse case out
of the information provided in an attack tree? Explain why or why not!

¢) Explain another way (than the one described in b) to create a misuse case.
Also explain why or why not this other way is better than starting with the
attack tree.

Question 8: Secure software engineering (2 points)

What is an artifact in the context of secure software engineering? Name two artifacts
and place them in the software development lifecycle.

Question 9: Vulnerabilities (8 points)

The function shown on the next page of this exam is a simple request handler for a
web application server. The request handler is called by the application server for
specific requests. You don’t need to be concerned about how this works.

This particular request handler is for file uploads. The request contains two important
parts: a path and data. Both can be accessed via a request object, which the request
handler gets from the application server.

The path indicates where to store the uploaded file. To prevent malicious users from
overwriting arbitrary files on the computer, the request handler prepends a document
root to the requested path. For example, if the request specified path /etc/passwd,
and the document root is /uploads, then the request handler will store the uploaded
data in the file /uploads/etc/passwd. It is important that no files are ever stored
outside the document root.

The data is the data to upload. It is assumed to be text encoded using ISO-8859-1,
which means that there is one byte per character, of which all eight bits are
significant. The request handler reads all the data into memory, converting one
character at a time to UCS-4, which uses exactly 32 bits per character. The converted
data is then written to the output file.

The request handler requires the session to be authenticated.
There are at least two vulnerabilities in the code.
For each vulnerability:

- Indicate the code that contains the vulnerability.

- Explain the input that could trigger the vulnerability (you do not need to
explain how to exploit it).

- Propose corrections to the code that would eliminate the vulnerability.

- Name and explain any mitigation techniques in the compiler, libraries or
operating system that could prevent the vulnerabilities from being exploited.

There are some extra notes on the various functions used in the code on the last page
of this exam.

Continues on next page

Code for question 9

int request_handler(struct http_request *sess) ({

char anonymous;
char path[MAXPATHLEN] ;

int size;
char c, rootd;
FILE *in, *out;

uint32_t *buf, *tmp;

AIonymous =

is_anonymous (sess) ;

/* Check if the request is valid */

if (sess->request == NULL)
return INVALID REQUEST;

/* Place the document root into path */

strcpy (path, document_root) ;

/* Set rootd to 1 if path is

u/u

*/

rootd = (path[0]

/* Check that roo
if (strlen(path)

== '/' && path[l] ==

t, request,
+ strlen(sess->request)

return INVALID_REQUEST;

null and possible extra

Y05

vl Fits In path
+ rootd + 1 > MAXPATHLEN)

/* Now we know there is enough space in path. Perform the append */

if {rootd == 0)
strcat (path,
strcat (path,

\I/!I);
sess->request) ;

/* Read, encode,

if (!anonymous) {
size = atoi(http_get_header (sess,
buf = malloc(size * 4);
tmp = buf;

/* Add a / if path is not "/" */
/* Append the reguest path */

and copy the input if the user is authorized */

"content-length"));
/* Space for UCS-4 encoding */
/* Save a copy of the pointer */

in = http_get_input_stream(sess);

while (size--) {
c = fgetc(in);
if (c == -1)
break;
*tmp = latinl_to_ucsd (c);
tmp += 1;
}

fclose(in) ;

size =
out = fopen(path, "w");
fwrite(buf, 4, size,

fclose(out) ;
free(buf) ;
return OK;
}
else
return UNAUTHORIZED;

atol (http_get_header (sess,

out) ;

/* Read at most size bytes */
/* Get one character */

/* End of file */

/* Terminate reading */

/* Convert character */

/* Advance to next position */

/* Close the input */

"content-length"));
/* Open the output file */

L'

/* Write the entire buffer contents */

/* Close the output file */
/* Free allocated memory */

Continues on next page

Notes on the code for those not very familiar with C

The code above uses some API functions and variables from the application server:
is_anonymous returns 1 if the request is anonymous (i.e. not authenticated).
http_get_header returns the content of the specified HTTP header.

http_get_input_stream returns a file pointer from which the handler can read the request
data. The file pointer returned by this function should be closed using fclose.

latinl_to_ucs4 converts a single character from ISO-8859-1 encoding to UCS-4 encoding
(i.e. from one to four bytes).

document_root is a string guaranteed to be a valid path on the filesystem, and guaranteed to
be no more than MAXPATHLEN characters long.

INVALID REQUEST, UNAUTHORIZED, and OK are constants that this function may
return.

struct http_request represents an HT'TP request. The request field contains the path the
client has requested.

The code also uses the following standard C library functions:

malloc allocates memory on the heap. The parameter to malloc specifies how much memory
can be allocated. Memory allocated with malloc is returned to the heap using the free
function. When malloc fails to allocate sufficient memory, it returns NULL.

free frees allocated memory. It must never be called twice on the same pointer.

The fgete function reads a single character from a file pointer. It returns an integer
representing the character, or -1 if there are no more characters to read.

strepy copies data to a destination from a source. It operates on null-terminated strings (i.e.
standard C strings). For example, to copy a string from a to b, call strepy(b,a). Both a and b
must be pointers to strings or be character arrays. If b contains the string “test”, then the
function will copy five bytes: the four characters and the null terminator.

streat concatenates two strings. Like strepy it operates on standard C strings. For example, to
place the contents of a at the end of b, call strcat(h,a). The resulting string will also be null
terminated.

strlen calculates the number of characters in a string. It does not count the null terminator.

atoi converts a string to an integer. If the string does not represent a valid integer, then its
behavior is undefined (it will probably return 0).

fwrite writes output to a file pointer. The call fwrite(buf,size,nitems,fp) writes nitems items of
size size from the memory that buf points to, to the file pointer fp.

felose closes an open file pointer.

uint32_t is an integer datatype that occupies exactly 32 bits. char is an integer datatype that
represents an ASCII character; it occupies one byte (eight bits). FILE* is a file pointer, from
which functions such as fgetc can read input.

MAXPATHLEN is the maximum length of a valid path name.

C handles arithmetic on pointers differently from arithmetic on integers. If p is a pointer to a
datatype that occupies n bytes, then the statement p += I will advance p to the next element —
i.e. increment it by n. In this example, pointer arithmetic is used to advance the ¢mp pointer
one element at a time from the start of buf up to the last element.

