Forsattsblad till skriftlig
tentamen vid Linképings Universitet

Datum for tentamen 2011-08-22

Sal TER3

Tid 14-18

Kurskod TDDC90

Provkod TEN1
Kursnamn/beniimning Programvarusikerhet
Institution IDA

Antal uppgifter som 10

ingar i tentamen

Antal sidor pa tentamen (inkl. |7

forsittsbladet)

Jour/Kursansvarig David Byers

Telefon under skrivtid 282821

Besoker salen ca kl. 15:30, 17:00
Kursadministrator Madeleine Héger
(namn + tfnnr + mailadress) | 282360, madha@ida.liu.se
Tillatna hjilpmedel Inga

Ovrigt

(exempel niir resultat kan ses
pa webben, betygsgriinser,
visning, 6vriga salar tentan
gar i m.m.)

LiTH, Linkodpings tekniska hogskola
IDA, Institutionen for datavetenskap
Nahid Shahmehri

Written exam
TDDC90 Software Security
2011-08-22

Permissible aids
Dictionary (printed, NOT electronic)

Teacher on duty
David Byers, 282821

Instructions

The exam is divided into two parts with a total of ten questions. You should answer
all questions in all parts. In order o get the highest grade you will need sufficient
points in the second part.

You may answer in Swedish or English.

Grading

Your grade will depend on the total points you score on the exam. The following
grading scale is preliminary and might be adjusted during grading.

Grade 3 AT T

Points required | 20 27 35

Question 1: Software security (6 points)

State and briefly explain the three principles and/or practices that you think contribute
the most to good software security. Rank these principles in order of importance, and
motivate your ranking.

You will be graded in part on your priorities and ranking and in part on your
explanations and motivation.

Question 2: Vulnerabilities (2 points)

Briefly explain one operating-system based method for preventing exploitation of
heap-based buffer overflows.

Question 3: Fuzz testing (4 points)

a. Explain what fuzz testing is and how it works.

b. What kind of security problems is fuzz testing useful for?

c. Give a concrete example of a security problem (ideally code or pseudo-code)
that fuzz testing will probably not detect, and suggest an activity (e.g. testing
or analysis) that would be appropriate for detecting that kind of problem.
Motivate your answer. ‘

Question 4: Common criteria (2 points)

Explain what a protection profile in the Common Criteria is and how it is used.

Question 5: Vulnerabilities (2 points)

Explain what a race condition vulnerability is. Give an example of code containing a
race condition vulnerability.

Question 6: Security requirements (2 points)

Is it possible for a program to have serious security flaws despite the implementation
being absolutely flawless? Motivate your answer.

Question 7: Static analysis (2 points)

Explain at least one good point (“pro’) and one bad point (“con”) of static analysis.

Question 8: Secure design patterns (2 points)

What is a secure design pattern? Why would a developer use a secure design pattern
rather than create a custom design?

Question 9: Secure software engineering (8 points)

Explain what The Trustworthy Computing Security Development Lifecycle (SDL) is
and what its principles are. Provide an example of a security-related activity for each
of the phases in the SDL. What do you think the strengths and weaknesses of this
process are? Motivate your answer.

Question 10: Vulnerabilities and detection (10 points)

The purpose of the program shown on the next page of this exam is to allow a non-
privileged user to append data to specific files the user would normally not be
permitted to alter (see the program notes, below). Each output line is suffixed with the
user’s user name.

The following security requirements exist:

- The program must not contain any buffer overflows, format string errors, race
conditions, integer overflows or other common vulnerabilities.

- If the program exists with exit status 0 (success), it must have written every
byte of input, apart from newlines (which are optional), to the output file.

- The program must not allow the user to write to any other files than those with
the appropriate permissions (see program notes below for details).

- The program must not crash on any input.
The program has three known vulnerabilities that an attacker could exploit.

a) Identify and explain at least two vulnerabilities in the code. For each
vulnerability, indicate the line(s) of code involved, explain how they resultin a
vulnerability, explain the inputs or actions that would trigger the vulnerability
(you do not need to provide a complete exploit), and propose corrections to the
code that would eliminate the vulnerability.

b) The program violates one secure design principle. Which one? Explain the
principle, and propose modifications to the code so that the principle is no longer
violated.

Program notes (you will need these to answer the questions)

The program is installed setuid root (i.e. the effective user ID on execution is 0, which
allows the program to access any file). It has to be setuid root in order to do its job,
but checks that it only alters files it is allowed fo alter.

A user may append to a file provided that the following conditions are met: itis a
regular file, not executable by anyone, and has both the setgid and sticky bits set. You
shall assume that the program checks these conditions correctly (i.e. is_appendable
function is correctly implemented).

The program compiles without any warnings. Contines on next page

There are some extra notes on the various functions used in the code on the last page

of this exam.

Code for question 10

#include <stdio.h>

#include <string.

h>

#include <sys/stat.h>

#include <pwd.h>
#include <stdlib.

h>

finclude <sys/types.h>

finclude <unistd.

/*

* Check whether PATH is a file we are

h>

* file is appendable if

* has the setgid and sticky bits set,

*/

allowed to append data to. A

{and only if) it is writeable by the owner,

int is appendable (char *path}) {
struct stat statbuf;

if (stat (path,

and is not executable.

sstatbuf)) /* Get metadata for the file */

return 0; /* 1f that fails, return 0 */
if (S _ISREG({statbuf.st_mode) && /* Is it a regular file? */
{statbuf.st mode & $_ISGID) && /* Is the setgid bit set? */
{statbuf.st mode & 8 _ISVTX) && /* Is the setgid bit set? */
!{statbuf.st_mode & S _IXUSR) && /* The file may not be user ... */
{statbuf.st_mode & S_IXGRP) && /* ... group ... */
! {statbuf.st mode & S_IXOTH) && /* ... or other executable */
{statbuf.st_mode & S_IWUSR)) /* Is it user-writeable? */
return 1;
return 0;

}

#define BUFSZ 2048

int main{int argeg, char

char outbh[BUFSZ],

struct passwd *pw;

int ulen;
FILE *fp;

if {largv{l]} exit(l);

/* Ensure consistent buffer size */

**argv) |

ink {BUFSZ];

/* Bzxit 1f no filename given */

/* Get some information about the user sc we can log that to the
cutput file together with the user's data. */

pw = getpwuid{getuid()}:

if {ipw) exit(l):

ulen = strlen{pw->pw_name);

/* Get user information */

/* Bxit if getpwuid failed */

/* Check that the target file is appendable. */

if (is_appendable(argv[1])) {

/* Get username length */

/* Now that we know that it is safe to write to the file, we
open it for writing (in binary mode}, and seek to the end
of the file,
somewhere in the middle. */

fp = fopen(argv({i], "ab"™);

to ensure that we are appending,

not writing

/* Yes, s open it */

if {fp) exit{l);

/* Lf open fails, then exit */

/* Read cone line at a time until the end of file. We read at

Contines on next page

mest BUFSZ~ulen characters in order to be sure that the
username (ulen chars) and the read line will f£it into the
target buffer. */

while (fgets({inb, BUFSZ - ulen, stdin)) {
/% If there is a trailing newline, then remove it */

if (inb[strlen{inb)-11 == "\n")
inbistrlen{inb) -1} = '\0';

/% Build the output string. We checked that there is
enough room, but will still use strnopy/strncat. First
we copy the user name, then a separator, then the
user’'s input. In each step we copy at most the number
of characters remaining in the buffer. */

strncpy (outb, inb, BUFSZ - ulen - 4)

strncat (cutkh, " [, BUFSZ-strlen(outb)};
strncat (outh, pw->pw_name, BUFSZ-strlien{outb)):
strncat (cutbh, "J\n", BUFSZ-strlen{cutb});

/* Write the line to the output file; 1f writing fails,
exit with a non-zero exit status. */

if {fputs(outb, fp) == EOF)
exit (1);
}
felose (fp) ; /* Close the output file #*/
}
exit (0); /* Bxit the program with success */

Contines on next page

Notes on the code for those not very familiar with C
The code uses the following standard C library and Unix functions:

stat gets information about a file such as its owner, permissions and so forth. Note that
you shall assume that is_appendable is correctly implemented.

getpwuid(uid) gets information about the user with user ID wid. In this program, we only
use the user’s name, which is known to be at most 64 characters, printable ASCII
characters only.

getuid() returns the real user ID of the process, i.e. the user that invoked the program. So
even if the program is setuid root, this will return the ID of the user who started it.

strlen(sfr) returns the number of characters in the string s, not counting the terminating
ASCII NUL character. Thus, strfstrlen(str)-1] is the last character in the string s¢r.

fopen(path, mode) opens the file path, returning a file pointer. The mode ab means open
the file for appending in binary mode. This is the correct mode for this program.

fgets(buf, bufsz, fp) reads one line of input from the specified file. The buf parameter is
the buffer to read input to. The bufsz parameter is the maximum number of bytes to write
to the buffer. The fp argument is the file pointer to read from. If fgets successfully reads
an entire line, it will include the terminating linefeed character in the string. Under no
circumstances will fgets write more than bufsz bytes to the target buffer.

strncpy(dst, src, n) copies at most » characters from src to dst. If there is no null (zero)
byte among the first » characters of src, the resulting string will not be null terminated.

strncat(dst, src, r) appends at most # characters from sre to dst, overwriting the null byte
at the end of dst, then adds a terminating null byte after the appended characters.

fputs(buf, fp) writes the contents of bufto the file pointer fp.
fclose(fp) closes the open file pointer fp.

exif(starus) terminates the program with exit status stafus.

Strings in C are ferminated by ASCII NUL (0), i.e. null terminated. Unless otherwise
specified, all functions will return or produce correctly terminated strings.

