; '-é.ﬁ Forsattsblad till skriftlig
R tentamen vid Linkdpings Universitet
Datum for tentamen 2010-12-22

Sal

Tid 14-18

Kurskod TDDC90

Provkod TENI1
Kursnamn/benimning Programvarusékerhet
Institution IDA

Antal uppgifter som 10

ingdr i tentamen ‘

Antal sidor pa tentamen (inkl. |7

forsittsbladet)

Jour/Kursansvarig Shanai Ardi

Telefon under skrivtid 282608

Besoker salen ca kl. 15:30, 17
Kursadministrator Madeleine Héger

(namn + tfnnr + mailadress) | 282360, madha@ida.liu.se
Tillatna hjilpmedel Inga

Ovrigt

(exempel nér resultat kan ses
pa webben, betygsgrinser,
visning, dvriga salar tentan
gar i m.m.)

LiTH, Link&pings tekniska hogskola
IDA, Institutionen fr datavetenskap

Nzhid Shahmehri
Written exam
TDDC90 Software Security
2010-12-22
Permissible aids

Dictionary (printed, NOT electronic)

Teacher on duty
Shanai Ardi / 282608

Instructions

The exam is divided into two parts with a total of ten questions. You should answer
all questions in all parts. In order to get the highest grade you will need sufficient
points in the second part.

You may answer in Swedish or English.

Grading

Your grade will depend on the total points you score on the exam. The following
grading scale is preliminary and might be adjusted during grading.

Points required 20 27 35

Part one

Question 1: Software security (4 points)

State and briefly explain the four principles and/or practices that you think contribute
the most to good software security, You will be graded in part on your priorities and
in part on your explanations.

Question 2: Vulnerabilities (2 points)

Briefly explain one operating-system-based method for preventing exploitation of
stack-based buffer overflows.

Question 3: Fuzz testing (4 points)

The following function allocates a grid of x by y characters. If an attacker can control
x and y, the code contains an integer overflow that can lead to a denial of service
attack. If the user also controls the data that is later copied into the grid, it can lead to
arbitrary code execution.

a. Would fuzz testing be an effective method for finding the denial of service
problem? Explain why or why not!

b. Would fuzz tesiing be an effective method for finding the arbitrary code
execution problem? Explain why or why not!

char *alleoc grid(int x, int y) {
char *p = malloc(x * y); /* Allocate x * y characters */

char *result = p; /* Keep a copy of p for later */
if (p == NULL) /* Check that allocation worked */
" return NULL; /* If not, return immediately */
while {y-- > 0} /* Loop over all v coordinates */
Xx = X /* Make a copy of x */
while {(xx > 0} /* Loop over all x coordinates */
p o= 0; / Store 0 into current element */
p +=1 /* Advance to next element */
return res; /* Return the new grid */

Question 4: Security evaluation (2 points)

Why is security evaluation needed? Answer from both the vendor’s and
consumer’s/customer’s point of view.

Question 5: Vulnerabilities (4 points)

Explain what a race condition is (from a software security perspective). Give a
concrete example of code or pseudocode containing a security-relevant race
condition. Explain your example in detail, including how the race condition could be
exploited by an attacker.

Question 6: Security requirements (4 points)

Name and explain four properties of a product that can be covered by security
requirements.

Question 7: Static analysis (2 points)

In the context of static analysis explain the terms sound and path sensitive.

Question 8: Secure design patterns (4 points)

Explain one secure design pattern in detail (how it works, what problems it solves, in
what context it is appropriate, etc.). You may choose any pattern except privilege
separation (also known as PrivSep) or its equivalents/variants.

Question 9: Secure software engineering (8 points)

Explain what The Trustworthy Computing Security Development Lifecycle (SDL) is
and what its principles are. Provide an example of a security-related activity for each
of the phases in the SDL. What do you think the strengths and weaknesses of this
process are? Motivate your answer.

Question 10: Vuinerabilities and detection (10 points)

The purpose of the program shown on the next page of this exam is to allow a non-
privileged user to append data to specific files the user would normally not be
permitted to alter (see the program notes, below). Each output line is suffixed with the
USer’s user name.

The following security requirements exist:

- The program must not contain any buffer overflows, format string errors, race
conditions, integer overflows or other common vulnerabilities.

- If the program exists with exit status 0 (success), it must have written every
byte of input, apart from newlines (which are optional), to the output file.

- The program must not allow the user to write to any other files than those with
the appropriate permissions (see program notes below for details).

- The program must not crash on any input,

Contines on next page

The program has three known vulnerabilities that an attacker could exploit.

a) Identify and explain at least two vulnerabilities in the code. For each
vulnerability, indicate the line(s) of code involved, explain how they result in a
vulnerability, explain the inputs or actions that would trigger the vulnerability
(you do not need to provide a complete exploit), and propose corrections to the
code that would eliminate the vulnerability.

b) The program violates one secure design principle. Which one? Explain the
principle, and propose modifications to the code so that the principle is no longer
violated.

Program notes (you will need these to answer the questions)

The program is installed setuid root (i.e. the effective user ID on execution is 0, which
allows the program to access any file). It has to be setuid root in order to do its job,
but checks that it only alters files it is allowed to alter.

A user may append to a file provided that the following conditions are met: itis a
regular file, not executable by anyone, and has both the setgid and sticky bits set. You
shall assume that the program checks these conditions correctly (i.e. is_appendable
function is correctly implemented).

The program compiles without any warnings.

There are some extra notes on the various functions used in the code on the last page
of this exam.

Code for question 10

#include <stdio.h>
$include <string.h>
#include <sys/stat.h>
$include <pwd.h>
finclude <stdiib.h>
#include <sys/types.h>
#include <unistd.h>

/’*
* Check whether PATH is a file we are allowed to append data to. A
* file is appendable if (and only 1f) it is writeable by the owner,
* has the setgid and sticky bits set, and is not executable.
*/

int is_appendable (char *path) {
struct stat statbuf;

if (stat{path, &statbuf)) /* Get metadata for the file */
return 0; /% If that fails, return 0 */
if (S ISREG(statbuf.st mode) && /* Is it a regular file? */

(statbuf.st mode & S ISGID) && /* Is the setgid bit set? */

(statbuf.st_mode & S_ISVIX) && /* Is the setgid bit set? */
¢ (statbuf.st_mode & § IXUSR) && /* The file may not be user ... */
1(statbuf.st mode & S_IXGRP} && /* ... group ... */
!{statbuf.st mede & §_IXOTH) && /* ... or other executable */
(statbuf.st_mode & S_IWUSR)) /* Is it user-writeabls? */
return 1;
return 0;
}
ftdefine BUFSZ 2048 /* Ensure consistent buffer size */

Contines on next page

int main{int argeg, char **argv) {
char outb[BUFSZ}, inb[BUFSZ];
struct passwd *pw;
int uwieny
FILE *fp;

if {largvil]) exit(l): /* Exit if no filename given */

/* Get some information about the user so we can log that to the
output file together with the user's data. */

pw = getpwuid(getuid{)}; /* Get user information */
if (ipw) exit(l): /* Exit if getpwuid failed */
ulen = strlen (pw->pw_name) ; /* Get username length */

/* Check that the target file is appendable. */
if (is_appendable(argv[1])} {

/* Now that we know that it is safe to write to the file, we
open it for writing (in binary mode), and seek to the end
of the file, to ensure that we are appending, not writing
somewhere in the middle. */

fp = fopen{argv{i], "ab"): /* Yes, so open it */
1f (!fp) exiti{l); /* If open fails, then exit */

/* Read one line at a time until the end of file., We read at
most BUFSZ-ulen characters in order to be sure that the
username (ulen chars) and the read line will £it into the
target buffer. */

while (fgets (inb, BUFSZ - ulen, stdin)} {
/* If there is a trailing newline, then remove it */

if (inb[strlen(inb)-1] == '\n")
inbstrlen(inb)~1] = "\Q';

/* Build the output string. We checked that there is
enough room, but will still use strncpy/strncat. First
we copy the user name, then a separator, then the
user's input. In each step we copy at most the number
of characters remaining in the buffer. */

strnepy (outbh, inb, BUFSZ -~ ulen ~ 4)

strncat (outh, " [", BUFSZ-strlen{outb});
strncat {outb, pw->pw_name, BUFSZ-strlen (outb)):!
strncat {outh, "]\n", BUFSZ-strlen(outb));

/* Write the line to the output file; if writing fails,
exit with a non-zero exit status. */

if {fputs(outb, fp} == EOF)
exit (1),
}
fclose {fp): /* Close the output file */
}
exit (0); /* Exit the program with success */

Contines on next page

Notes on the code for those not very familiar with C
The code uses the following standard C library and Unix functions:

stat gets information about a file such as its owner, permissions and so forth. Note that
you shall assume that is_appendable is correctly implemented.

getpwuid(uid) gets information about the user with user ID wid. In this program, we only
use the user’s name,

getuid() returns the real user ID of the process, i.e. the user that invoked the program. So
even if the program is setuid root, this will return the ID of the user who started it.

strlen{sz) returns the number of characters in the string str. Thus, str/strien(str)-1] is the
last character in the string s#r.

fopen(path, mode) opens the file path, returning a file pointer. The mode ab means open
the file for appending in binary mode. This is the correct mode for this program,

fgets(buf, bufsz, fp) reads one line of input from the specified file. The buf parameter is
the buffer to read input to. The bufsz parameter is the maximum number of bytes to write
to the buffer. The fp argument is the file pointer to read from. If fgets successfully reads
an entire line, it will include the terminating linefeed character in the string. Under no
circumstances will fzets write more than bufsz bytes to the target buffer.

strnepy(dst, src, n) copies at most n characters from src to dst. If there is no null (zero)
byte among the first » characters of src, the resulting string will not be null terminated.

strncat(dst, src, H) appends at most n characters from s¥c to dst, overwriting the null byte
at the end of dst, then adds a terminating null byte after the appended characters,

fputs(buf, fp) writes the contents of buf'to the file pointer fp.
felose(fp) closes the open file pointer fp.

exit(starus) terminates the program with exit status status.

