ﬁv‘ﬁ"' e T . . pg s

é{;“ Forsattsblad till skriftlig
ey tentamen vid Linképings Universitet
Datum for tentamen 2009-08-24

Sal T1

Tid 14-18

Kurskod TDDC90

Provkod TENI1

Kursnamn/benéimning Software Security

Institution IDA

Antal uppgifter som 10

ingar i tentamen

Antal sidor pa tentamen (inkl. | 4

forsittsbladet) |
Jour/Kursansvarig David Byers/Nahid Shahmehri

Telefon under skrivtid

013-282821 / 0708-282821

Besoker salen ca kl.

15:00, 16:30

Kursadministrator
(namn + tfnnr + mailadress)

Madeleine Hager
282360, madha@ida.liu.se

Tillatna hjdlpmedel

Tryckt ordlista

Ovrigt

(exempel nir resultat kan ses
pa webben, betygsgriinser,
visning, dvriga salar tentan
gar i m.m.)

LiTH, Link6pings tekniska hogskola
IDA, Institutionen f6r datavetenskap
Nahid Shahmehri

Written exam
TDDC90 Software Security
2009-08-24

Permissible aids
Dictionary (printed, NOT electronic)

Teacher on duty
David Byers, 013-282821 / 0708-282821

Instructions

The exam is divided into two parts with a total of ten questions. You should answer
all questions in all parts. In order to get the highest grade you will need sufficient
points in the second part.

You may answer in Swedish or English.

Grading

Your grade will depend on the total points you score on the exam. The following
grading scale is preliminary and might be adjusted during grading.

Points required 18 24 30

In order to get the highest grade you must have scored at least six points in part 2.

Part one

Question 1: Privilege Separation (2 points)

Explain what privilege separation is, and how it helps improve security in software.

Question 2: The Common Criteria (2 points)

What is the difference between Security Target and Protection Profile in Common
Criteria?

Question 3: Static Analysis (2 points)

Explain at least one good point (“pro”) and one bad point (“con™) of static analysis.

Question 4: Developing Secure Software (2 points)

Is it possible for a program to have serious security flaws despite the implementation
being absolutely flawless? Motivate your answer,

Question 5: Fuzz Testing (4 points)

The following C code calculates the line equation (in the form y = ax +b) for the line
that intersects two points pl and p2. For some inputs, the program will crash.

struct line { int a, by };
struct peint { int x, yr }7

struct line *create line(struct point pl, struct point p2) {
struct line *1 = malloc(sizeof{struct line));
l.a = {p2.y -~ pl.y) / (p2.x - pl.x};
l.b = pl.y - l.a * pil.x;
return 1;

}

Is fuzz testing using random inputs for p1 and p2 likely to detect the problem?
Motivate your answer. If your conclusion is that fuzz testing is unlikely to detect the
problem, then discuss how this kind of problem could be overcome in fuzz testing.

Question 6: Security Requirements (4 points)

Briefly explain the Security Quality Requirements Engineering (SQUARE)
methodology.

Question 7: Race Conditions (4 points)

Explain what a race condition is, and how it relates to software security. Give two
different code examples showing (potential) race conditions, and explain how each
works, and how each could be exploited.

Question 8: Common Criteria (4 points)

What are Evaluation Assurance Levels in Common Criteria and how are they used? If
you use any further terminology from the Common Criteria, briefly explain each term.

Part two

In order to score well on these questions you will need to show that you understand
not only the technical issue or concept at hand, but also its context and its interactions
with its context (e.g. processes, methods, techniques, technology, people, risks,
threats, and so on). We think that good answers to these questions will require at least
one or two handwritten pages (more or less may be required depending on how you
write).

Question 9: RMF (6 points)

The Secure Development Lifecycle (SDL) is an increasingly popular approach to
secure software development. Explain how it works. What SSE-CMM capability level
do you think this process belongs to? Motivate your answer.

Question 10: Vulnerabilities (6 points)

The function shown on the last page of this exam (read_ppm) parses a portable
pixmap image file. A PPM file consists of a “magic number”, followed by the image
dimensions, color depth, and finally the image data. Each pixel of image data is either
three bytes or six bytes long, depending on the color depth.

The read_ppm function below works quite well for normal PPM files, but contains at
least two vulnerabilities that can be exploited using files with carefully chosen
contents.

For each vulnerability:
- Indicate the code that contains the vulnerability.

- Explain the input that could trigger the vulnerability (you do not need to
explain how to exploit it).

- Propose corrections to the code that would eliminate the vulnerability.

- Name and explain any mitigation techniques in the compiler, libraries or
operating system that could prevent the vulnerabilities from being exploited.

Code for gquestion 10

struct image *read ppm{FILE *f{p)
{
int version;
int rows, cols, maxval;
int pixBytes=0, rowBytes=0, rasterBytes;
uint8 t *p;
struct image *img;

/* Read the magic number from the file */

if ((fscanf{fp, " P%d ", &version) < 1} |1 (version != 6)) |
return NULL;

)

/* Read the image dimensions and color depth from the file */

if (fscanf(fp, " %d %¢ %d ", &cols, &rows, &maxval) < 3) |
return NULL;

}

/% Calculate some sizes */

pixBytes = (maxval > 253) ? 6 : 3; // Bytes per pixel

rowBytes = pixBytes * cols; // Bytes per rocw

rasterBytes = rowBytes * rows; // Bytes for the whole image

/* Allocate the image structure and initialize its fields */
img = malloc(sizeof (*img));

if (img == NULL) return NULL;

img->rows = rows}

img~>cols = cols;

img~>depth = (maxval > 255) ¢ 2 : 1;

img->raster = (void*)malloc(rasterBytes);

/* Get a pointer to the first pixel in the raster data. */
/* It is to this pointer that all image data will be written. */
p = img->raster;

/* Iterate over the rows in the file */
while (rows--) {
/* Tterate over the columns in the file */
cols = img-~>cols;
while {cols——) |
/* Try to read a single pixel from the file */
if {(fread(p, pixBytes, 1, fp) < 1) {
/* TIf the read fails, free memory and return */
free{img->raster);
free {img};
return NULL;
}

/* Advance the pointer to the next location to which we
should read a single pixel. */
p += pixBytes;

}

/% Return the image */
return img;

Notes on the code for those not very familiar with C

fscanf reads from a file to a program variable. The second argument specifies the
input format. For example, fscanf (fp, " P%d ", &version) reads zero or more
whitespace characters followed by an uppercase “P”, followed by an integer. The
value of the integer is stored in the variable named version. The fscanf function
returns the number of items it read successfully.

malloc allocates memory on the heap. The parameter to malloc specifies how much
memory can be allocated. Memory allocated with malloc is returned to the heap using
the free function. When malloc fails to allocate sufficient memory, it returns NULL.

The data type image has four fields, rows, cols, depth and raster. When initialized,
rows contains the number of rows in the image, cols the number of columns, and
depth is either 1 or 2, indicating how many bytes are used to represent a single color
value. The raster ficld contains a pointer to a memoty area on the heap that holds all
the pixel values. Each pixel value is a sequence of three color values.

The fread function reads raw bytes from a file. In this function it is used to read the
image data, one pixel (i.e. 3 or 6 bytes) at a time. It returns the number of items read
(in this function, the number of pixels). Specifically, the function call fread (p,
pixBytes, 1, f£p) will read one item that is pixBytes long from the file pointed to by
Jp, and store that item in the memory location pointed to by the variable p.

The sizeof operator returns the size of something. For example, sizeof (int) will
return the number of byte required to store an integer, and assuming img is a pointer
0 @ struct image, sizeof (*img) will return the number of bytes required to store
an image structure.

