Forsattsblad till skriftlig
tentamen vid Linkdpings Universitet

Datum fér tentamen 2009-04-09

Sal Ul5

Tid 8-12

Kurskod TDDC90
Provkod TENI1
Kursnamn/benimning Software security
Institution IDA

Antal uppgifter som 10

ingar i tentamen

Antal sidor pa tentamen (inkl. |6

forsiittsbladet)

Jour/Kursansvarig David Byers
Telefon under skrivtid 013-282821/0708-282821
Besoker salen ca kL. 9:00, 11:00
Kursadministrator Madeleine Higer

(namn + tfnnr + mailadress)

282360, madha@ida.liu.se

Tillatna hjilpmedel

Tryckt ordlista

Ovrigt

(exempel nér resultat kan ses
pa webben, betygsgrinser,
visning, 6vriga salar tentan
gdr i m.m.)




LiTH, Linkopings tekniska hogskola
IDA, Institutionen for datavetenskap
Nahid Shahmehri

Written exam
TDDC90 Software Security
2010-04-09

Permissible aids
Dictionary (printed, NOT electronic)

Teacher on duty
David Byers, 013-282821, 0708-282821

Instructions

The exam is divided into two parts with a total of ten questions. You should answer
all questions in all parts. In order to get the highest grade you will need sufficient
points in the second part.

You may answer in Swedish or English.

Grading

Your grade will depend on the total points you score on the exam. The following
grading scale is preliminary and might be adjusted during grading.

Points required 18 24 30

TImportant

In order to get the highest grade you must have scored at least six points in part 2.




Part one

Question 1: Static analysis (2 points)

An analysis can be said to be complete. Explain what complete means in this context.

Question 2: Vulnerabilities (2 points)

Explain what an integer overflow is, and how it can impact security.

Question 3: The Common Criteria (2 points)

Explain what a protection profile is and how it is used.

Question 4: SDL (2 points)

Name two activities that apply in the implementation phase of the Security
Development Lifecycle (SDL).

Question 5: Static analysis (4 points)

Explain what taint analysis is, and the kinds of security problems it can identify.

Question 6: Fuzz testing (4 points)

Explain what fuzz testing (or fuzzing) is, then answer the following questions:
a) What is the typical rate of false positives when using fuzz testing?

b) Give a realistic example (in code) of a problem that fuzz testing is unlikely to
detect, and explain why fuzz testing is unlikely to detect it.

¢) Give arealistic example (in code) of a problem that fuzz testing is fikely to
detect, and explain why fuzz testing is likely to detect it.

Question 7: Code analysis {4 points)

Static analysis can be applied to executables as well as source code. Explain why it
might be better, in some situations, to analyze the executable. Include a concrete
example to illustrate your explanation. Also explain why analysis of source code may
be preferred (or even necessary) in other situations.



Question 8: Secure design patterns (4 points)

Explain one secure design pattern in detail. You may choose any pattern except
privilege separation (also known as PrivSep) or its equivalents?

Part two

In order to score well on these questions you will need to show that you understand
not only the technical issue or concept at hand, but also its context and its interactions
with its context (e.g. processes, methods, techniques, technology, people, risks,
threats, and so on). We think that good answers to these questions will require at least
one or two handwritten pages {(more or less may be required depending on how you
write).

Question 9: Requirements engineering (6 points)

Name and briefly describe the nine steps of the SQUARE process for requirements
engineering.

Question 10: Vulnerabilities and detection (6 points)

The function shown on the next page of this exam is a simple request handler for a
web application server. The request handler is called by the application server for
specific requests. You don’t need to be concerned about how this works.

This particular request handler is for file uploads. The request contains two important
parts: a path and data. Both can be accessed via a request object, which the request
handler gets from the application server.

The path indicates where to store the uploaded file. To prevent malicious users from
overwriting arbitrary files on the computer, the request handler prepends a document
root to the requested path. For example, if the request specified path /etc/passwd,

and the document root is /uploads, then the request handler will store the uploaded
data in the file /uploads/etc/passwd.

The data is the data to upload. It is assumed to be text encoded using ISO-8859-1,
which means that there is one byte per character, of which all eight bits are
significant. The request handler reads all the data into memory, converting one
character at a time to UCS-4, which uses exactly 32 bits per character. The converted
data is then written to the output file.

The request handler requires the session to be authenticated.
There are at least two vulnerabilities in the code.
For each vulnerability:
- Indicate the code that contains the vulnerability.
- Explain the input that could trigger the vulnerability (you do not need to

explain how to exploit it).

Continues on next page



JUY D

- Propose corrections to the code that would eliminate the vulnerability.

- Name and explain any mitigation techniques in the compiler, libraries or
operating system that could prevent the vulnerabilities from being exploited.

There are some extra notes on the various functions used in the code on the last page
of this exam.

Code for question 10

int reguest handler (struct http_request *sess) |
char anonymous;
char path[MAXPATHLEN];
int size;
char ¢, rootd;
FILE *in, *out;
uint32_t *buf, *tmp;

anonymous = 1s_anonymous (sess);
/* Check if the request is valid */
if (sess->regquest == NILL)

return INVALID_REQUEST;

/% Place the document root inte path */
strepy{path, document_root);

/% get rootd to 1 if path is "/" */
rootd = (path{0] == /' && pathil] == '\0");

/* Check that root, request, null and possible extra n/m fits in path */
if (strlen (path) + strlen{sess->request} *+ rootd + 1 > MAXPATHLEN)
return INVALID REQUEST;

/% Now we know there is enough space in path . perform the append */

if {rootd == 0}
strcat (path, "/"); /% Add a / if path is not "/" */
streat (path, sess->regquest); /* Append the request path &/

/* Read, encode, and copy the input if the user is authorized */
1f {lanonymous) {
size = atol(http get header(sess, "content-length"} )

buf = malloc(size * 4); /% Space for UCS-4 encoding */
tmp = buf; /% Save a copy of the pointer */
in = httpwget_inputmstream(sess);
while {size-~) { /* Read at most size bytes */

o = fgetc(in): /* Get one character */

if g == ~1) /% End of file */

break; /* Terminate reading */

*tmp = ilatinl to_ucséd{c); /* Convert character 4

cap 4= 1} /* Advance to next position */
}
fclose {in); /* Close the input */
size = atoi(httpwqet_header(sess, "gontent~Llength"));
out = fopen{path, "w"); /* Open the cutput file */
fwrite{buf, 4, size, out); /* Write the entire buffer contents */
fclose{out) s /% Close the output file */
free(buf}: /% Free allocated memory */

return OK;

!
else
return UNAUTHORIZED;

Continues on next page



Notes on the code for those not very familiar with C

The code above uses some API functions and variables from the application server:
is_anonymous returns 1 if the request is anonymous (i.e. not authenticated).
hitp_get_header returns the content of the specified HTTP header.

http_get_input_stream returns a file pointer from which the handler can read the request
data. The file pointer returned by this function should be closed using felose.

latinl_to_ucsd converts a single character from ISO-8859-1 encoding to UCS-4
encoding (i.e. from one to four bytes).

document_roof is a string guaranteed to be a valid path on the filesystem, and guaranteed
to be no more than MAXPATHLEN characters long.

INVALID REQUEST, UNAUTHORIZED, and OK are constanis that this fonction
may return,

struct http_request represents an HTTP request. The reques? field contains the path the
client has requested.

The code also uses the following standard C library functions:

malloc allocates memory on the heap. The parameter to malloc specifies how much
memory can be allocated. Memory allocated with malloc is returned to the heap using the
free function. When malloc fails to allocate sufficient metnory, it returns NULL.

free frees allocated memory. It must never be called twice on the same pointer.

The fgete function reads a single character from a file pointer. It returns an integer
representing the character, or -1 if there are no more characters to read.

strepy copies data to a destination from a source. It operates on null-terminated strings
(i.e. standard C strings). For example, to copy a string from a to b, call strepy(b,a). Both a
and b must be pointers to strings or be character arrays. If b contains the string “test”,
then the function will copy five bytes: the four characters and the null terminator.

streat concatenates two strings. Like strepy it operates on standard C strings. For
example, to place the contents of @ at the end of b, call streat(b,a). The resulting string
will also be null terminated.

strien calculates the number of characters in a string. It does not count the null
terminator.

atoi converts a string to an integer. If the string does not represent a valid integer, then its
behavior is undefined (it will probably return 0).

fwrite writes output to a file pointer. The call fwrite(buf size, nitems,fp) writes nitems
itermns of size size from the memory that buf points to, to the file pointer fp.

fclose closes an open file pointer.
uint32_t is an integer datatype that occupies exactly 32 bits. char is an integer datatype

that represents an ASCII character; it occupies one byte (eight bits). FILE* is a file
pointer, from which functions such as fgefc can read input.

MAXPATHLEN is the maximum length of a valid path name.

C handles arithmetic on pointers differently from arithmetic on integers. If p is a pointer
to a datatype that occupies 7 bytes, then the statement p += I will advance p to the next
element — i.e. increment it by #. In this example, pointer arithmetic is used to advance the
tmp pointer one element at a time from the start of bufup to the last element.



