

Försättsblad till skriftlig tentamen vid
Linköpings Universitet

Datum för tentamen 2011-10-22
Sal (2)
Om tentan går i flera salar ska du bifoga
ett försättsblad till varje sal och ringa in
vilken sal som avses

TER1 TER2

Tid 14-18
Kurskod TDDC88
Provkod TEN1
Kursnamn/benämning
Provnamn/benämning

Programutvecklingsmetodik,
Tentamen

Institution IDA
Antal uppgifter som ingår i tentamen 7
Jour/Kursansvarig
Ange vem som besöker salen David Broman, Kristian Sandahl

Telefon under skrivtiden 0707-90 90 75 (DB);
0706-68 19 57 (KS)

Besöker salen ca kl. 15
Kursadministratör/kontaktperson
(namn + tfnr + mailaddress)

Åsa Kärrman 013-28 1454
asa.karrman@liu.se

Tillåtna hjälpmedel

Två A4-ark med handskrivna
anteckningar. Engelskt lexikon eller
flerspråkigt lexikon till eller från
engelska.
Two sheets of handwritten A4
pages. You may write on both
pages, with any type of size and
colour. One volume of dictionary
to/from English or an English
wordbook.

Övrigt

Vilken typ av papper ska användas,
rutigt eller linjerat

Antal exemplar i påsen

Page 1(8)

Linköpings Universitet
IDA
David Broman, Kristian Sandahl

Written exam for Software Engineering Theory
Course codes TDDC88, TDDC93, 725G64

Instructions to students, please read carefully
• Explicitly forbidden aids: Textbooks, machine-written pages, photocopied

pages, pages of different format than A4, electronic equipment.
• Try to solve as many problems as possible.
• Motivate all solutions.
• Please, write and draw clearly.
• Write solutions for different areas (fundamental part) and different problems

(advanced part) on separate sheets of paper.
• Label all papers with AID-number, date of examination, course code,

examination code, and page number.
• You may write solutions in either Swedish or English.
• Please, note that the problems are not necessarily written in order of difficulty.
• TIP! Read through all exercises in the beginning of the exam. This will give

you the possibility to ask questions about all parts of the exam, since the
examiner will visit you in the beginning of the exam time. Remember that the
examiner has over 200 students, so plan for solving problems in a flexible
order if you have to wait for clarification.

Grading
The exam consists of two parts: Fundamental and Advanced.

The Fundamental part has problems worth 10 credits per area. Areas are:
Requirements, Planning & Processes, Design & Architecture, Testing & SCM, and
Software Quality. Thus the Fundamental part can give maximally 50 credits.

The Advanced part has problems worth 50 credits in total. Each problem typically
requires a longer solution of several pages.

The maximum number of credits assigned to each problem is given within
parentheses at the end of the last paragraph of the problem.

Pass condition: At least 4 credits per area in the Fundamental part and at least 50
credits in total. The total amount of credits also includes the bonus credits you might
have got in lecture exercises autumn 2011. This gives you the mark 3 in the Swedish
system and a C in ECTS. If you have at least 4 credits for 4 of the areas in the
Fundamental part, then you can still pass if you have more than 60 credits in total.

Higher marks are given based on fulfilled pass condition and higher amounts of
credits according to the following table:

Page 2(8)

Total credits Mark in Swedish system Translation to ECTS
 0-49 UK Fx
50-66 3 C
67-83 4 B
84- 5 A

Multiple choice questions

In multiple choice questions we will ask you to write down the letters A, B, C, or D
for the one or two statements that you think are true. Note that you should not write
down the statements that you think are false. There are exactly two true statements per
question, so answering with three or four alternatives with gives 0 credits.

For each statement that you select that is correct (i.e., that the statement is in fact true)
you get one credit. For each statement that you select that is incorrect (i.e., that the
statement is in fact false, but you believed it was true) you get minus one credit. Each
multiple choice question can give maximum 2 credits and minimum 0 credits, i.e.,
you cannot get negative credits for one multiple choice question.

Example 1: Assume that you have written down statements A and C. If now
statements A and B were true, and statements C and D were false, you would get +1
credit for writing down A, but -1 credit for writing down C. Hence, the total credits
for the multiple choice question is 0.

Example 2: Assume that you have written down statement B. If now statement A and
B were true, and statement and statement C and D were false, you would get +1 credit
for the multiple choice question.

Example 3: Assume you correctly wrote both statement A and B. If now statement A
and B were true, and statement and statement C and D were false, you would get +1
credit for writing down A, and +1 for writing down B. Hence, the total credits for the
multiple choice question is 2.

Good Luck!

David and Kristian

Page 3(8)

Problems

Part 1: Fundamental

Area 1: Requirements

1 a) Which of the following statements are true? Answer with the statement letter
only, no motivation is needed. (2)

A. Requirements Elicitation is the process where the requirements engineer
writes down his/her understanding of the forthcoming system in a Software
Requirements Specification.

B. A Feature is a requirement that is highly prioritized by a majority of
stakeholders.

C. RAM – Requirements Abstraction Model helps us to identify related
requirements on different abstraction levels.

D. One goal with Requirements Analysis is to detect and resolve conflicts
between requirements.

1 b) Draw a UML Use-Case Diagram of a system for web auctions of consumer
products, such as eBay or Tradera. There shall be two different use-cases and two
actors in the diagram. Use-case texts for the use-cases shall be written in complete
sentences. (4)

1 c) Write down two functional and two non-functional requirements of the LiU
student portal. The requirements shall consist of complete sentences and be possible
to use in system testing. (4)

Area 2: Planning and Processes

2 a) Which of the following statements are true? Answer with the statement letter
only, no motivation is needed. (2)

A. Time-boxing means that if not all tasks in a sprint are completed, then the
sprint’s length is allowed to be extended maximal one more week.

B. If an activity is delayed, that is part of the critical path in a GANTT-chart, then
the whole project will be delayed.

C. Agile software development means that tight customer collaboration makes
documentation unnecessary.

D. The product backlog in Scrum is a prioritized list and anyone can add new
items to this list.

2 b) Explain the purpose of COCOMO and Planning poker, the main ideas behind
these approaches, and how they are different. (4)

2 c) Explain the Scrum concepts Product Backlog, Sprint Backlog, Task Board, and
Impediment List. (4)

Page 4(8)

Area 3: Design and Architecture

3 a) Which of the following statements are true? Answer with the statement letter
only, no motivation is needed. (2)

A. A software module named “FileIO” (abbreviation for File Input Output),
containing only functions related to file handling, is an example of a module
with high cohesion.

B. Integrity is a concept within information security and means that only
authorized users may read protected information.

C. Apps in smart phones (e.g., IPhone and Android) that communicate with a
data base server over a network are examples of two-tier fat-client
architectures.

D. State-machines and sequence diagrams are example of UML diagrams
describing the static structure of a software system.

3 b) Explain together with an example the differences between implementation,
execution, and deployment architecture views. (4)

3 c) Explain what is similar and what is different between the two UML relations
“composition” and “association” (4).

Area 4: Testing and SCM

4 a) Which of the following statements are true? Answer with the statement letter
only, no motivation is needed. (2)

A. A Fault of Commission can be due to a human error.
B. The JUnit framework contains operations for generating test-cases for a

suitable white-box coverage criterion.
C. Smoke Tests are a kind of regression test.
D. A Stub is a small piece of software replacing an upper layer in integration

testing, by calling the module under test with some predefined parameter
settings.

Page 5(8)

4 b) Below you find a decomposition tree of an imaginary system of 10 modules. The
arrows indicate dependency between modules. Describe the order of integration and
testing if you are using a Top-Down integration strategy. Give one advantage and one
disadvantage of Top-Down integration testing. (4)

4 c) Describe the following terms in the context of Configuration Management:
Baseline, Development Branch, Commit1, and Clone2. (4)

Area 5: Software Quality

5a) Which of the following statements are true? Answer with the statement letter only,
no motivation is needed. (2)

A. The usability metric, “number of commands invoked by the users” can be
measured already with a paper prototype of the system.

B. Companies certify themselves according to ISO Standard 9001 in order to
avoid documentation and concentrate on coding high-quality software.

C. The measurement, Non-Comment Lines of Code (NCLOC), is dependent on
the implementation language used.

D. The process area Avoid Defects (AD) is mandated on CMMI level 3 in the
staged representation.

1 You may assume that you use Subversion without motivation

2 You may assume that you use Git without motivation.

Page 6(8)

5 b) Some Process Areas in CMMI are related. Explain the similarities and
differences between the two pairs:

• Project Planning (PP) – Project Monitoring and Control (PMC)
• Requirements Management (REQM) – Requirements Development (RD) (4)

5 c) You are a project manager in a CMMI level 4 company that has a database of
measurements of anything you wish to know about your product, processes and
resources. Now you meet your manager in the corridor and she tells you that the board
wants four different metrics showing how much is left of your project in absolute or
relative numbers.

Now, describe the four metrics you chose to use, with a thorough motivation of why
they indicate how much that is left in your project. (4)

Page 7(8)

Part 2: Advanced

6. You have a shopping card in your favorite supermarket. It has a very flexible
service. When you are shopping you insert the card before paying, and then you have
the following alternatives:

1. You can decide to pay from the account you have in the supermarket’s own
bank. That is done by yourself answering “yes” to the question “withdraw
from card?”, which is show on the screen of the customer terminal.

2. If you answer “no” to the question you can either pay in cash or with another
bank card. If you chose another card, you manage the payment yourself at the
customer terminal.

3. If there is not enough money in the account you have in the supermarket’s own
bank, you can ask the cashier to empty your account, and take the rest of the
payment in cash or with another bank card.

4. The other alternative if there is not enough money in the account you have in
the supermarket’s own bank, is to ask the cashier to cancel the purchase and
add money to your account. This is done by re-inserting the card in the
customer terminal, when the cashier tells you to do so. Then you type in the
sum you would like to add, and give the cashier the sum in cash. An
alternative is to draw the sum from another bank card. In the latter case, you
inform the cashier, who will ask you to remove the card, and insert the other
bank card. Regardless of how you pay, you will get a receipt, and then you
redo the purchase with the shopping card of the supermarket (now there are
enough money on the account).

5. Regardless of how you want to pay, the system checks if you are eligible for
any discounts, in that case the purchase sum is updated. After a fulfilled
payment you get bonus credits registered.

On your way home you think about how such a system can be designed, and after a
good meal, you sit down and start sketching a possible design with UML diagrams.

a) Draw a class diagram describing the payment system with shopping cards.
There shall be at least five classes, all with at least one attribute, and one
operation. Associations shall have a name and multiplicity information, unless
you use UML relationships. For each class you shall motivate why you chose
to represent this model element as a class in the system. 1-2 sentences will do
for each class. (10)

b) Draw one or more sequence diagrams describing the wordy alternatives above

for the customer to pay. You need at least 3 roles participating in the exchange
of messages and at least 10 messages. You need to use fragments to make the
diagram fairly simple to read. A valid solution to this task has at least one
fragment. Omit all low-level signaling setting up connections between
different parts of the system. (10)

Page 8(8)

7. Assume that you are responsible of performing manual system testing of a web-
based flight booking system. Your current task is to verify that the search function for
available departures is working correctly. In the search page, there are three input text
fields: “From city”: the name of the city for departure, “To city”: the name of the city
for arrival, and “Departure date” that is a text string of format “YYYY-MM-DD”,
where YYYY means the year (e.g., 2011), MM the month (e.g. 07), and DD the day
(e.g. 05). When a user has filled in the information in all fields, he/she clicks on a
“Search” button and the system returns a page with possible flights. The following list
of requirements gives a partial view of the system:

1. The system shall have a maximal response time of 2 seconds, where the
response time means the elapsed time between user request and user response.

2. The system shall validate that the date of travel is a valid date.
3. If a user inputs a city name that is misspelled, the system shall suggest a city

name that is close to the input text. For example, if the user input is
“Linkpoing”, the system shall ask “Did you mean city Linköping”.

4. The system shall list flights that are on the departure date as well as the flights
that are available the day before and day after the departure date.

The system has a database that is storing information about all possible flights. For
each possible flight the following information is stored in the database:

• Name of the city that the flight is departing from
• Name of the of arrival city
• Date of departure
• Time of departure
• Flight time

You may make further assumptions as long as you describe them clearly.

a) Define a test database with at least 10 flights. Define at least five important
equivalence classes (both valid and invalid). Explain why you have chosen
these database items and these equivalence classes. You may make further
assumptions as long as you give clear explanations (10).

b) Write down 8 test cases of the system using boundary value testing. Discuss to

what level your test plan covers testing of all stated requirements. Explain in
detail both where your plan is strong and weak, and how it could be further
improved to be more complete (10).

c) Explain how software inspections can be used to discover faults. Give a brief

overview of the inspection process and its roles. Discuss and argue for or
against using software inspections together with testing in the given scenario
(10).

	TDDC88_TEN1_20111022_78566_1319114572_71142
	Försättsblad till skriftlig tentamen vid Linköpings Universitet

	exam111022
	Written exam for Software Engineering Theory
	Instructions to students, please read carefully
	Grading
	Multiple choice questions

	Problems
	Part 1: Fundamental
	Area 1: Requirements
	Area 2: Planning and Processes
	Area 3: Design and Architecture
	Area 4: Testing and SCM
	Area 5: Software Quality

