Information page for written
examinations at Linkoping

University
Examination date 2019-10-30
Room (1) TER1(12}
Time 8-12
Edu. code TDDC78
Module TENA1

Edu. code name
Module name

Programming of Parallel Computers - Methods and Tools
(Programmering av parallelidatorer - metoder och verktyg)
Written examination (Skriftlig tentamen)

Department

IDA

Number of questions
in the examination

8

Teacher
responsible/contact
person during the
exam time

Examinator, kursansvarig, jour: Christoph Kessler

Contact number
during the exam time

013-282406 / 0703-666687 (C. Kessler)

Visit to the
examination room
approximately

Ca ki 10.00

Name and contact
details to the course
administrator

(name + phone nr +
mail)

Veronica Kindeland Gunnarsson
veronica.kindeland.gunnarsson@liu.se
013-285634

[Equipment permitted

|

[English dictionary

Other important
information

See general instructions on page 1 of the exam.

Number of exams in
the bag

1/1




TENTAMEN / EXAM
TDDC78

Programmering av parallelldatorer /
Programming of parallel computers

2019-10-30, 08:00-12:00

Christoph Kessler
Dept. of Computer and Information Science (IDA)
Linképing University

Hjilpmedel / Allowed aids: Engelsk ordbok /
dictionary from English to your native language

Examinator: Christoph Kessler

Jourhavande lirare:
Christoph Kessler (IDA), 013-28-2406; 0703-666687; visiting at ca. 10:00

Maximalt antal podng / Max. #points: 40

Betyg / Grading (prel.): The preliminary threshold for passing (grade 3) is at 20p, for grade 4
at 28p, for grade 5 at 34p.
Because of regulations by Linképing University, we do not give ECTS grades. If you need
one, please contact the course secretary after the result has been entered in LADOK.

Tentavisning / Exam review session: for the main exam, about 2.5-3 weeks after the exam,
to be announced on the course homepage; afterwards, the exams will be archived in the IDA
student expedition. There is no exam review session for re-exams.

General instructions

e Please use a new sheet of paper for each assignment. Order your sheets by assignments,
number them, and mark them on top with your exam ID number and the course code.

o You may answer in either English or Swedish. English is preferred because not all correcting
assistants understand Swedish.

e Write clearly. Unreadable text will be ignored.

o Be precise in your statements. Unprecise formulations may lead to a reduction of points.
e Motivate clearly all statements and reasoning.

¢ Explain calculations and solution procedures.

e The assignments are not ordered according to difficulty.




1. (7p

(a)
(b)

(c)

()

.) Performance tools and analysis

(0.5p) Give one typical example for performance-related data about shared-memory
parallel programs that can be collected using software counters.

(2 p.) Describe performance analysis through tracing. (1p)
What are the advantages and disadvantages of the approach, in comparison to
alternative techniques for performance data collection? (1p)

(1.5p) Which property/properties of real parallel computers is/are modeled well
by the BSP (Bulk-Synchronous Parallel) model, and which property / properties
of real parallel computers does it abstract from?

And what kind of restrictions does BSP require on program structure?

(1p) When is a parallel algorithm for some problem (asymptotically) work-optimal?
(give a formal definition)

(2p) Performance metrics

(i) How is the so-called peak performance of a modern cluster-based parallel com-
puter system such as Tetralith calculated? (derive a commented formula).

In particular, which assumptions are made for determining the peak performance?
(1p)

(ii) And why does the peak performance generally differ (often, significantly) from
the (Ryqz) performance obtained for the LINPACK benchmark? (0.5p)

(iii) Finally, what is the unit of performance typically used in the High-Performance
Computing domain? (0.5p)

2. (4 p.) Parallel program design methodology

Foster’s design methodology consists of four stages. Name and explain them. Give
details about their goals. What are the important properties of the result of each
stage? Be thorough!

3. (6 p.) Parallel computer architecture

(a)

(b)

(c)

(1.5p) Many bus-based shared-memory systems use bus-snooping for cache coher-
ence. What does that mean, and how does it work? In particular, under what
condition can it guarantee sequential consistency?

(2 p.) What is ‘false sharing’? In what kind of parallel computers and in what
situations does it occur, and how does it affect performance? Suggest one possible
way how the problem could be reduced.

(1.5p) For each of the following requirements, suggest the most appropriate inter-
connection network topology/topologies (among those discussed in the lecture):
i. Good fit for an on-chip network of a many-core CPU
ii. Efficient global sum computation with a very large number of nodes
iii. Network cost linear in the number of nodes and suitable for Cannon’s systolic
matrix-matrix multiplication algorithm

Shortly justify your answers.




4. (7 p.) OpenMP

(a)

(d)

(1.5p) You are given a working and reasonably well-structured sequential legacy
code for some performance-critical numerical simulation, written in C or Fortran.
The computational core of the large code base consists of a few dozen for loops
most of which appear to be parallelizable (such as dataparallel loops) or partly
parallelizable (such as reduction loops).

Your job is to parallelize the code for a shared-memory system to achieve some
speedup, and you do not have much time for that task. Moreover, the original
author of the code wants to be able to modify it later.

(i) If you have the choice between Pthreads and OpenMP, which one do you
choose for this task, and why? (0.5p)

(i) Where do you start and how do you proceed? (Main steps, no details) (1p)

(2p) Most OpenMP work-sharing constructs, such as the parallel for/do loops,
allow to specify an optional nowait clause. For example,

#pragma omp for nowait
for (i=0; i<N; i++)
{ ...}
#pragma omp for
for (j=0; j<M; j++)
{ ...}

(i) Describe the effect of the nowait clause on the computation of the executing
threads. (0.5p)

(i) Why can it be beneficial for performance to use nowait? (0.5p)

(iii) Formulate a sufficient condition (dependence-based argument) on the two
loops in the example above for when it is safe to use nowait in the first of the
two loops. (1p)

(2.5p) What kind of loop-based computations can benefit from using the reduction
clause in OpenMP?

Give also one example loop (OpenMP code without reduction), explain how
the generated code for the loop will work instead when using reduction (be
thorough), and give 2 main reasons why using reduction is likely to improve
performance.

What is the main difference between a PGAS programming language and a shared
memory programming language like OpenMP? (1p)

5. (9 p.) Parallel Basic Linear Algebra

(a)

(1p) Why is it very important for a supercomputing center to have efficient im-
plementations of BLAS installed?




(b) MPI and Matrix-Vector Product:
You are given a distributed-memory parallel computer with p = 72 nodes (for
simplicity, using one process per node) organized as a r x r square grid of nodes
(processes); see the figure on the left for the case p = 4.
You are also given a nxn square matrix A and a n-element vector b stored initially
on process Fyo. Assume that each n/r X n/r square partition is initially already

stored consecutively in memory on Fy.

L

ii.

iii.

NN

D N\
AR

T

o

Initial memory layout of A on P0,0

Which feature does MPI offer in order to simplify the indexing of MPI pro-
cesses in communication in such a 2D processor grid? Explain shortly what
it does and how it could be used here. (1p)

Write a MPI program (exact syntax is not required, MPI pseudocode is fine,
explain your code) that computes the matriz-vector product x = Ab in parallel
(distributing the work across all p processors), where the matrix A, initially
residing entirely on process Fyo only, should be distributed in a 2D-block
manner as shown for p = 4 in the right figure, i.e., each process will own a
(n/r) % (n/r) square block of elements once distributed; assume for simplicity
that r divides n.

For this given distribution of A, choose a suitable data distribution of the
vectors b and z for the distributed computation; motivate your choice.

At the end, the result vector x should be available on process Fy .

Use suitable BLAS calls for the sequential computations performed in each
MPI process.

Use suitable collective MPI communication operations wherever applicable.
Explain your code.

Draw also a processor-time diagram that shows the ordering of work phases
and communication. (5p)

Assume for simplicity that the p nodes are directly connected to each other
with a dedicated direct link for each pair of nodes. Analyze the parallel
execution time of the program above using the Delay cost model, i.e., sending
and receiving a block of k elements takes time tcomm (k) = ak+f for constants
a, B > 0. If you need to make further assumptions, state them carefully. (2p)



6. (2 p.) Parallel Solving of Linear Equation Systems

When considering the second step in Foster’s design method, we discussed as an ex-
ample the update schemes of iterative solver methods for linear equation systems, in-
cluding Jacobi-style and Gauss-Seidel-style update schemes, over the matrix elements
in each iteration step. For each of them, explain its dependence structure between
element updates and its maximum degree of parallelism within one iteration of the
algorithm.

7. (1.5 p.) Transformation and Parallelization of Sequential Loops

(a) Explain why tiling (of a loop nest) can considerably improve the performance of
sequential matrix-matrix multiplication on today’s computer architectures. (1.5p)

8. (4.5 p.) MPI

(a) (1.5p) Today’s HPC clusters have multi-core nodes. How can, in general, MPI and
OpenMP parallelization be suitably combined to leverage hybrid (MPI+OpenMP)
parallelism in the same application?

(b) (1.5p) How does the nonblocking (also called incomplete) send routine MPI_Isend
differ from the ordinary blocking MPI_Send?

Under what condition is it safe to replace a MPI_Send call by MPI_Isend?

(c) (1.5 p.) Explain the Communicator concept in MPI. How does it support the
construction of parallel software components?




