
TENTAMEN / EXAM
TDDC78

Programmering av parallelldatorer /
Programming of parallel computers

2018-10-31, 08:00–12:00, G36

Christoph Kessler
Dept. of Computer and Information Science (IDA)

Linköping University

Hjälpmedel / Allowed aids: Engelsk ordbok /
dictionary from English to your native language

Examinator: Christoph Kessler

Jourhavande lärare:
Christoph Kessler (examiner) 013-28-2406; 0703-666687, visiting ca. 10:00

Maximalt antal poäng / Max. #points: 40

Betyg / Grading (prel.): The preliminary threshold for passing (grade 3) is at 20p, for grade 4
at 28p, for grade 5 at 34p.
Because of regulations by Linköping University, we do not give ECTS grades. If you need
one, please contact the course secretary after the result has been entered in LADOK.

Tentavisning / Exam review: about 2-3 weeks after the exam, to be announced on the course
homepage. Afterwards, the exams will be archived in the IDA student expedition.

General instructions

• Please use a new sheet of paper for each assignment. Order your sheets by assignments,
number them, and mark them on top with your exam ID number and the course code.

• You may answer in either English or Swedish.

• Write clearly. Unreadable text will be ignored.

• Be precise in your statements. Unprecise formulations may lead to a reduction of points.

• Motivate clearly all statements and reasoning.

• Explain calculations and solution procedures.

• The assignments are not ordered according to difficulty.

1. (8 p.) Performance tools and analysis

(a) (1 p.) Which performance data collection method is required in order to be
able to draw a communication statistics diagram (displaying the amount of bytes
communicated between every pair of processes)? Justify your answer (technical
reasons).

(b) (2 p.) Describe performance analysis through tracing. (1p)
What are the advantages and disadvantages of the approach, in comparison to
alternative techniques for performance data collection? (1p)

(c) (1p) Modern tool-suites for performance analysis of parallel programs consist of
a collection of several kinds of tools. Give four different kinds of such tools. (I.e.,
no concrete tool names, but a short term saying what each kind of tool does.)

(d) (2p) Why should the PRAM (Parallel Random Access Machine) model of par-
allel computing be used early in the process of designing and analyzing parallel
algorithms?
And why should it better be replaced by some other cost model in the later phases
of parallel program design? Give one example of such a parallel cost model that
could be used for analysis when targeting MPI programs on a cluster system like
Triolith.

(e) (2p) How is the so-called peak performance of a modern cluster-based parallel
computer system such as Triolith calculated? (derive a commented formula).
In particular, which assumptions are made for determining the peak performance?
And why does the peak performance generally differ (often, significantly) from
the (Rmax) performance obtained for the LINPACK benchmark?
Finally, what is the unit of performance typically used in the High-Performance
Computing domain?

2. (4 p.) Parallel program design methodology

Foster’s design methodology consists of four stages. Name and explain them. Give
details about their goals. What are the important properties of the result of each
stage? Be thorough!

3. (6 p.) Parallel computer architecture

(a) (1p) Can programs operating on arrays of double-precision numbers with good
spatial locality but no temporal locality in their memory access behavior benefit
from a cache architecture with a cache line size of 1 double? Justify your answer.

(b) (1.5p) Many bus-based shared-memory systems use bus-snooping for cache coher-
ence. What does that mean, and how does it work? In particular, under what
condition can it guarantee sequential consistency?

(c) (1.5p) What does hardware multithreading mean?
And what is the main difference between a hardware-multithreaded processor and
a multi-core processor?

2

Under what condition (on the computations made by these threads) can hardware
multithreading help to improve performance (throughput)?

(d) (2p) For each of the following requirements, suggest the most appropriate inter-
connection network topology/topologies (among those discussed in the lecture):

i. As cheap as possible
ii. As short maximum latency as possible
iii. As low maximum node degree as possible
iv. Good fit for an on-chip network of a many-core CPU

Shortly justify your answers.

4. (6 p.) OpenMP

(a) (2.5p) What kind of loop-based computations can benefit from using the reduction
clause in OpenMP?
Give also one example loop (OpenMP code without reduction), explain how
the generated code for the loop will work instead when using reduction (be
thorough), and give 2 main reasons why using reduction is likely to improve
performance.

(b) In principle, every OpenMP program could likewise be expressed by explicit
thread programming, e.g. by using libraries such as Pthreads. What is the main
advantage of using OpenMP over such thread programming libraries? Explain
your answer. (1p)

(c) (2.5p) OpenMP 3.0 and later versions support the task concept.
In what situations (e.g., for what kind of loops) can the use of tasks help to par-
allelize the execution, while the traditional OpenMP worksharing constructs are
not applicable? Give an example (pseudocode, explain your program constructs)
of such a case for illustration and explain how the tasks are defined in OpenMP
3+.
And how does OpenMP map the tasks to processors?

5. (7 p.) Parallel Basic Linear Algebra

(a) (1.5p) Name a Level-1, a Level-2 and a Level-3 BLAS function and give for each
one a short explanation of its (main) operands and computation.

(b) (5.5p) Consider the following straightforward sequential code for the multiplica-
tion of two N ×N square matrices A and B:

for (i=0; i<N; i++)
for (j=0; j<N; j++)

C[i][j] = 0.0;
for (i=0; i<N; i++)

for (j=0; j<N; j++)
for (k=0; k<N; k++)

C[i][j] = C[i][j] + A[i][k] * B[k][j];

3

(i) Apply tiling with tile size S × S (with 1 < S � N) to the second loop nest.
Show the resulting pseudocode. (1p)
(ii) Assume that N is large. Why is tiling (with a suitably chosen S) beneficial
for the performance of this code on modern processor architectures? (1p)
(iii) Assume that your processors offer SIMD instructions that can load, store,
multiply or add four floatingpoint words together in one clock cycle if they are
adjacent in memory. Which loop in your tiled loop nest is the most suitable
one for vectorization using SIMD instructions, and why? Suggest a preparing
loop transformation that helps with efficient vectorization, and show the resulting
pseudocode. (2p)
(iv) Now parallelize the tiled code for a shared-memory parallel system, using
OpenMP loop parallelization. Choose a suitable loop to parallelize, and a suitable
scheduling policy (motivate your choices). If necessary, transform the code. Show
the resulting pseudocode. (1.5p)

6. (1 p.) Parallel Solving of Linear Equation Systems

When considering the second step in Foster’s design method, we discussed as an exam-
ple the update schemes of iterative solver methods for linear equation systems, includ-
ing Jacobi -style and Gauss-Seidel -style update schemes, over the matrix elements in
each iteration step. Choose one of them (state which one), and explain its dependence
structure between element updates and its maximum degree of parallelism within one
iteration of the algorithm.

7. (1 p.) Transformation and Parallelization of Sequential Loops

(a) Is the following C loop parallelizable (in this form)?

for (i=1; i<N; i++) {
S1: a[i] = sin(3.1415 * t[i-1]) + b[i];
S2: t[i] = 1.0 / a[i] + t[i];

}

Explain why or why not (dependence-based argument). (1p)

8. (7 p.) MPI

(a) (1.5p) Today’s HPC clusters have multi-core nodes. How can, in general, MPI and
OpenMP parallelization be suitably combined to leverage hybrid (MPI+OpenMP)
parallelism in the same application?

4

D

D
recvbuf

recvbuf

recvbuf

recvcount

P0

P1

P2

P3

A

B

C

D
sendbuf

sendbuf

sendbuf

sendbuf

sendcount

recvbuf

A

A

A

A

B

B

B

B

C

C

C

C

D

D

Figure 1: Effect of the MPI_Allgather operation on the processes’ local memories, here
shown for p = 4 processes.

(b) (5.5 p.) The MPI_Allgather operation is a collective communication operation
with the following parameters:

int MPI_Allgather (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm);

MPI_Allgather is a generalization of MPI_Gather: If executed by a group of p
MPI processes each contributing a local array in sendbuf with sendcount ele-
ments of type sendtype, each of the p processes will afterwards hold a copy of
the entire gathered array in its recvbuf, which is composed of the p×recvcount
elements coming from each send buffer in the order of the processor ranks. See
Figure 1.
Usually, the arguments for sendcount and recvcount and for sendtype and
recvtype, respectively, are equal in calls to MPI_Allgather. Also, all participat-
ing processes must pass equal argument values for each of these parameters. A
typical call could look as follows:

MPI_Allgather (Arr1, n, MPI_FLOAT, Arr2, n, MPI_FLOAT, MPI_COMM_WORLD
);

i. What is the difference in behavior to MPI_Gather? (0.5p)
ii. Write an implementation of MPI_Allgather using only MPI_Send and MPI_Recv

operations (i.e., no other communication operations). Use C, Fortran, or
equivalent pseudocode (explain your language constructs if you are not sure
about the right syntax). Explain your code. (2.5p)

iii. Show how your code behaves by drawing an annotated processor-time dia-
gram for p = 4 showing when messages are sent from which source to which
destination, and what they contain. (1p)

iv. Let n denote the value of sendcount and recvcount, and assume that the
send/recvtype denotes normal floatingpoint numbers. Analyze asymptot-
ically the (worst-case) parallel execution time of your implementation (for
arbitrary values of p and n) as a function in p and n. You may use the delay
model, the BSP model or the LogP / LogGP model for this purpose (state
which model you use). If you need to make further assumptions, state them
clearly. (1.5p)

5

