TENTAMEN / EXAM

TDDC78
Programmering av parallelldatorer /
Programming of parallel computers

2016-10-18, 08:00-12:00

Christoph Kessler
Dept. of Computer and Information Science (IDA)
LinkGping University

Hjidlpmedel / Allowed aids: Engelsk ordbok /
dictionary from English to your native language

Examinator: Christoph Kessler

Jourhavande lérare:
Christoph Kessler (examiner), on travel, 0703-666687 in case of emergency
August Ernstsson (assistant) 076-7710605; visiting at ca. 10:00

Maximalt antal poing / Max. #points: 40

Betyg / Grading (prel.): The preliminary threshold for passing (grade 3) is at 20p, for grade 4
at 28p, for grade 5 at 34p.
Because of new regulations by Linkoping University, we can no longer give ECTS grades. If
vou need one, please contact the course secretary after the result has been entered in LADOK.

Tentavisning / Exam review: nonec for re-exams. Exams will be archived in the IDA student
expedition.

General instructions

e Please use a new sheet of paper for each assignment. Order your sheets by assignments,
number them, and mark them on top with your exam ID number and the course code.

e You may answer in either English or Swedish. English is preferred because not all correcting
assistants understand Swedish.

e Write clearly. Unreadable text will be ignored.

e Be precise in your statements. Unprecise formulations may lead to a reduction of points.
e Motivate clearly all statements and reasoning.

e Explain calculations and solution procedures.

e The assignments are not ordered according to difficulty.






1. (6 p.) Performance tools and analysis

(a)

(e)
(f)

(0.5p) Modern processors provide several built-in hardware counters that al-
low to collect certain kinds of performance data. Give one typical example for
performance-related information (about sequential code) that can be obtained
from such counters.

(0.5p) Give one typical example for performance-rclated data about message pass-
ing programs that can be collected using software counters.

(1p) When is a parallel algorithm for some problem (asymptotically) work-optimal?
(give a formal definition)

(2p) Given is an idealized processor with a fully associative last-level cache of size
M memory words, with perfect LRU replacement policy and a cache line size of
1 memory word. Estimate the total number of last-level cache misses (including
cold misses) for the following sequential program snippet, depending on N, M
and K:

// A is an array of at least N+K memory words,

// initially not in cache.

// K>1, K <N is fixed for this loop but not statically known.
// Accumulator variable s is kept in a register during the loop.

s =0.0;
for (i=K; i<N+K; i++)
s += A[i] * A[i-K];

Hint: You need to distinguish between several cases.

(1p) There exist several possible causes for speedup anomalies in the performance
behavior of parallel programs. Name and explain one of them.

(1 p.) A long-running program is known to have a perfectly parallelizable part that
accounts for 90 percent of its sequential execution time. The rest is inherently
sequential. If we parallelize the program, how much parallel speedup can we
expect with 9 processors? Explain your calculation.

2. (4 p.) Parallel program design methodology

Foster’s design methodology consists of four stages. Name and explain them. Give
details about their goals. What are the important properties of the result of each
stage? Be thorough!






3. (3.5 p.) Parallel computer architecture

(a)

(b)

(2p) Cache-based architectures usually have cache line sizes that contain more
than one memory word.

(i) Describe, in general, the benefit(s) of having large cache line sizes instead of
small ones (quantitative argument). What kind of memory access patterns can
make best use of caches with large cache line sizes? (1p)

(ii) For a cache-based shared memory parallel system with coherent caches, in
what situation(s) would a small cache line size probably be better from a perfor-
mance point of view? (1p)

(1.5p) Simple tree-shaped interconnection networks are convenient for global ag-
gregation of data (e.g., parallel reductions), but lead to a scalability problem
when used as the main interconnection network of a parallel computer architec-
ture. Why? (0.5p)

Name and sketch an advanced tree-based interconnection network that does not
suffer from this problem, and explain why. (1p)

4. (6 p.) OpenMP

(a)

()

(2 p.) What is guided self-scheduling for loops (GUIDED clause in OpenMP)?
(1p)

Contrast its strengths and weaknesses to those of dynamic scheduling and of static
scheduling of loops. (1p)

What kind of loops can benefit from using the reduction clause in OpenMP?
Give one example (code), and explain why using reduction is likely to improve
performance. (2p)

(2 p.) What is the purpose of the flush directive in OpenMP? Give a short
example to illustrate how it is used. Name at least one technical causc that
makes the explicit use of flush in the program necessary to guarantee a correct
program execution.

5. (10 p.) Parallel Basic Linear Algebra

(a)
(b)

(2p) Name 2 different Level-1 BLAS functions and explain for each of them how
it could be parallelized on a shared-memory parallel system.

(4p) We discussed 2 variants of (sequential) matrix-vector multiplication, the ij
variant and the ji variant.

Show the pseudocode of both variants (state whether you assume C or Fortran
memory layout for 2D arrays), and also show for each variant which level-1 BLAS
function(s) it could use as subroutine(s). (2p)

Which of the two variants is better suited for cache performance, and which one
is better suited for vectorization? Explain your answer. (2p)



.




(¢) (4 p.) How does the SUMMA algorithm for distributed-memory parallel matrix-
matrix multiplication work? (2p)
Derive its time complexity (computation and communication time) as a formula
in n (number of rows, columns) and in p (number of nodes and of processors).
You may assume for simplicity that p is a square number, that transmitting a
message of M elements takes time SM + <, that only onec message can be sent
or received at a time, that there is no additional delay due to contention for
network connections, and that a broadcast of M elements across ¢ nodes takes

time (BM + ) logy ¢. (2p)

6. (2 p.) Parallel Solving of Linear Equation Systems

Straightforward message passing implementations for Gaussian Elimination (and sim-
ilarly, LU decomposition) expose a load balancing problem for row-block-wise and
column-block-wise distributions of the system matrix A. Explain the cause of the
load balancing problem (be thorough!) and how it could be solved (to most degree).

(2p)

7. (2 p.) Transformation and Parallelization of Sequential Loops

Given the following C loop:

s = a[0] * b[0];
for (i=1; i<N; i++) {
s = s + al[i] * b[i];

}

(a) Explain why the loop iterations cannot be executed in parallel in this form
(dependence-based argument). (0.5p)
(b) What kind of computation does this loop actually do? (0.5p)

Suggest a parallel algorithm for the same problem that could utilize up to N
processors in parallel (give the basic idea and asymptotic parallel time complexity
in the EREW PRAM model, but no details). (1p)

8. (6.5 p.) MPI

(a) (1p) Today’s HPC clusters have multi-core nodes. How can, in general, MPI and
OpenMP parallelization be suitably combined to leverage hybrid (MPI4+OpenMP)
parallelism in the same application?

(b) (5.5 p.) Simple String Matching in MPI
Given is a huge array A of N characters stored in the main memory of one node
of a cluster computer with P (for simplicity, fully connected) nodes (P > 1).

Given is also a short constant array S of M (with M <« N, and M can be
considered constant) characters that is available on node 0 at program start.






11.

iii.

1v.

. Write a message-passing parallel program (MPI-C or message passing pseu-

docode is fine, explain your code) that uses all P nodes in order to count
the total number of (contiguous) occurrences of the string S in A, i.e., the
number of all positions ¢ < N — M of A where, for all j =14,...,i + M — 1,
S[j] == Alj]. Use a simple brute-force parallel algorithm for string matching
like the one that we discussed in the lecture. Be thorough, and explain your
code carefully. (3p)

Which type of parallelism did you use in your program in (z)? (0.5p)

Make sure to explain all communication operations in (z). Draw a figure
for P = 4 nodes showing the distribution of A and the flow of messages
between the nodes over time. Which of these communication operations are
point-to-point communications and which ones are collective communication
operations? (1p)

Derive the asymptotic worst-case parallel execution time for your algorithm
as an expression (use big-O notation where appropriate) in N and P. (1p)






