L~ Forsattsblad till skriftlig

tentamen vid Linkopings Universitet

(fylls i av ansvarig)

Datum for tentamen 2013 -05-29
Sal U3, U4, U7, Ul0
Tid 14:00 — 18:00
Kurskod TDDC78
Provkod TENI

Kursnamn/benamning

Programmering av parallelldatorer
— metoder och verktyg

Institution IDA

Antal uppgifter som 10

ingar i tentamen

Antal sidor pa tentamen |6

(inkl. forsattsbladet)

Jour/Kursansvarig Christoph Kessler

Telefon under skrivtid

Se tackbladet (sida 1) av tentan

Besoker salen ca kl.

Se tackbladet (sida 1) av tentan

Kursadministrator
(namn + tfnnr + mailadress)

Carita Lilja, IDA, tel. 1463,
carita.lilja (@ liu.se

Tillatna hjilpmedel

Engelsk ordbok

Ovrigt
(exempel nir resultat kan ses pa

webben, betygsgranser, visning,
ovriga salar tentan gir i m.m.)

Se tdckbladet (sida 1) av tentan.
Tentavisningen annonseras senare
pa kurshemsidan.




TENTAMEN / EXAM

TDDC78
Programmering av parallelldatorer /
Programming of parallel computers

2013-05-29, 14:00-18:00, U3, U4, U7, U10

Christoph Kessler Dept. of Computer Science (IDA)
Linkoping University

Hj#ilpmedel / Allowed aids: Engelsk ordbok /
dictionary from English to your native language

Examinator: Christoph Kessler

Jourhavande larare:
Christoph Kessler (IDA) 013-28-2406; 0703-666687; visiting at ca. 16:00

Maximalt antal podng / Max. #points: 40

Betyg / Grading (prel.): The preliminary threshold for passing (grade 3) is at 20p, for
grade 4 at 28p, for grade 5 at 34p.
Because of new regulations by Linkoping University, we can no longer give ECTS
grades.

General instructions

e Please use a new sheet of paper for each assignment. Order your sheets by assignments,
number them, and mark them on top with your exam ID number and the course code.

e You may answer in either English or Swedish. English is preferred because not all correcting
assistants understand Swedish.

e Write clearly. Unreadable text will be ignored.

e Be precise in your statements. Unprecise formulations may lead to a reduction of points.
e Motivate clearly all statements and reasoning.

e Explain calculations and solution procedures.

e The assignments are not ordered according to difficulty.



1. (5.5 p.) Performance tools and analysis

(a)

(e)

(1 p.) Which performance data collection method is required in order to be able
to draw a processor-time diagram (also known as a Gantt chart)? Justify your
answer (technical reasons).

(1p) Modern tool-suites for performance analysis of parallel programs consist of
a collection of several kinds of tools. Give four different kinds of such tools. (Le.,
no concrete tool names, but a short term saying what each kind of tool does.)
(1p) When is a parallel algorithm for some problem (asymptotically) cost-optimal?
(give a formal definition)

(2 p.) (i) Derive Amdahl’s law and (i) give its interpretation.

(Note: a picture is nice but is not a proof; a calculation is expected for the
derivation of Amdahl’s Law.)

(0.5 p.) How are the supercomputers on the TOP500 list ranked?

2. (4 p.) Parallel program design methodology

Foster's design methodology consists of four stages. Name and explain them. Give
details about their goals. What are the important properties of the result of each
stage? Be thorough!

3. (6.5

(a)

p.) Parallel computer architecture

What does "hardware multithreading’ mean?

What is the main difference between a hardware-multithreaded processor and a
multi-core processor?

For what kind of code (type of instructions) can hardware multithreading help to
improve performance (throughput)? (2p)

(2 p.) What is ‘false sharing’? In what kind of parallel computers and in what
situations does it occur, and how does it affect performance? Suggest one possible
way how the problem could be reduced.

(2.5 p.) Describe the d-dimensional Hypercube network architecture (1p).

How does the maximum latency scale with the number p of processors? (give a
formula in p, 0.5p)

Give the idea of a routing algorithm that computes a shortest path for communi-
cation from a processor i to a processor j (1p).

4. (2 p.) OpenMP

(a)

(2 p.) What is the purpose of the flush directive in OpenMP? Give a short
example to illustrate how it is used. Name at least one technical cause that
makes the explicit use of £lush in the program necessary to guarantee a correct
program execution.



5. (3.5 p.) OpenMP Example

A novice OpenMP programmer has written the following erroneous program for cal-
culating S, (1/4):

#include <omp.h>
#include <stdio.h>

#define N 100000000
double s = 0.0;

int main()
{
int 3
#pragma omp parallel private(i)
{
#pragma omp for schedule(static)
for (i=1; i<=N; i++)
s = s + 1.0/(double) (i);

}

printf ("Sum: %1f\n", s );
return 0;

+

(a) The programmer uses static scheduling of the parallel loop iterations. Explain
how the iterations are mapped to the executing threads. (0.5p)
Taking the program as it is (ignoring the correctness problem below), is static
scheduling of the loop appropriate here? Explain why or why not. (0.5p)

(b) The program prints an incorrect result if executed on more than one processor.
Where is the bug, and what goes wrong? (1p)

(¢) There are several possible fixes to this problem, which differ considerably in their
effect on performance. Suggest a correct solution (OpenMP code) that should
lead to best achievable performance with multiple processors, and explain why.
(1.5p; a correct but suboptimal solution with explanation gives 0.5p)



6. (9.5 p.) Parallel Basic Linear Algebra

(a) Given a n x n single-precision floatingpoint matrix A and a n-element single-
precision floatingpoint vector b. For your sequential programming language of
choice (C or Fortran, state what you assume), describe a sequential algorithm
(pseudocode) for computing the matriz-vector product y = Ab, with

n—1
= Z aijb; for i =0,...,n -1

Jj=0

that has good data locality, i.e., is cache-efficient. Assume that the (for simplicity,
single-level) cache can hold up to 2n + 2 words simultaneously and applies LRU
as replacement strategy. State all assumptions carefully and calculate the number
of actual memory references (i.e., including re-accesses due to cache misses) as a
function in n. (2p)

(b) How would you optimize the code if the cache only can hold K < n elements at
a time? (sketch of the idea, no code required) (1p)

(¢) Describe how to extend the algorithm of (a) above for a message-passing system
with p processors each running one MPI process, such that the computational
work load is balanced across all processors. Assume that all data initially resides
on process 0 and that the result must finally be stored in process 0.

Give a suitable partitioning / distribution scheme for the main data structures
and show the psendocode. Use suitable collective communication routines (pseu-
docode or MPI) wherever appropriate. Erplain your code. Draw a figure to show
the resulting communication flow for p = 4.

Analyze the parallel exzecution time (calculation) using the delay model, assuming
for simplicity that the underlying interconnection network is fully connected (i.e.,
each processor has a direct network link to every other processor) with message
startup time a (clock cycles) and average (float) word transfer time 3 (clock
cycles), and that a processor can only send or recelve one message at a time. If
vou need to make further assumptions, state them carefully. (5p)

(d) Estimate the parallel efficiency of your algorithm for large p. (calculation) (1.5p)

7. (2 p.) Parallel Solving of Linear Equation Systems

Straightforward message passing implementations for Gaussian Elimination (and sim-
ilarly, LU decomposition) expose a load balancing problem for row-block-wise and
column-block-wise distributions of the system matrix A. Explain the cause of the
load balancing problem (be thorough!) and how it could be solved (to most degree).

(2p)



8. (1 p.) Transformation and Parallelization of Sequential Loops

(a) Is the following C loop parallelizable (in this form)?

for (i=0; i<N; i++)
alil = 2.0 * a[i-1] / bli] + clil;

Explain why or why not (dependence-based argument). (1p)

9. (4.5 p.) MPI

(a) How does the nonblocking (also called incomplete) send routine MPI_Isend differ
from the ordinary blocking MPI_Send?
Under what condition is it safe to replace a MPI_Send call by MPI_Isend? (1.5p)
(b) (1 p.) Give two good reasons for using collective communication operations in-
stead of equivalent combinations of point-to-point communication (MPI_Send
and MPI_Receive) operations.

(¢) (2 p.) Explain the Communicator concept in MPIL. How does it support the
construction of parallel software components?

10. (1.5 p.) Grid Computing

(a) (1 p.) What sort of applications (with what kind of parallelism) can use compu-
tational grids effectively?

(b) (0.5 p.) Name one task performed by grid middleware.

Ut



