
TENTAMEN / EXAM

TDDC78/TANA77

Programmering av parallelldatorer /

Programming of parallel computers

2012-08-14, 14:00�18:00, G32

Christoph Kessler and Henrik Brandén
Dept. of Computer Science (IDA), Dept. of Mathematics (MAI)

Linköping University

Hjälpmedel / Allowed aids: Engelsk ordbok /
dictionary from English to your native language

Examinator: Christoph Kessler (TDDC78), Henrik Brandén (TANA77)

Jourhavande lärare:
Christoph Kessler (IDA) 013-28-2406; 0703-666687; visiting at ca. 16:00
Marco Kupiainen (MAI) 011-4958703. In case of questions call before 16:30.

Maximalt antal poäng / Max. #points: 40

Betyg / Grading (prel.): The preliminary threshold for passing (grade 3) is at 20p, for grade 4
at 28p, for grade 5 at 34p.
Because of new regulations by Linköping University, we can no longer give ECTS grades.

General instructions

• Please use a new sheet of paper for each assignment. Order your sheets by assignments, number them,

and mark them on top with your exam ID number and the course code.

• You may answer in either English or Swedish. English is preferred because not all correcting

assistants understand Swedish.

• Write clearly. Unreadable text will be ignored.

• Be precise in your statements. Unprecise formulations may lead to a reduction of points.

• Motivate clearly all statements and reasoning.

• Explain calculations and solution procedures.

• The assignments are not ordered according to di�culty.



Note: In the case of questions regarding the assignments 4 to 5, please contact Marco Kupiainen in
the �rst hand; for questions regarding the other assignments, contact Christoph Kessler in the �rst
hand.

1. (5.5 p.) Performance tools and analysis

(a) (0.5p) Modern processors provide several built-in hardware counters that allow to collect
certain kinds of performance data. Give one typical example for performance-related
information (about sequential code) that can be obtained from such counters.

(b) (0.5p) Give one typical example for performance-related data about message passing

programs that can be collected using software counters.

(c) (1p) Compare performance data collection with hardware counters vs. software counters.

What has, in each case, to be done with the program (technically) to enable this data
collection?

What is the main advantage of using hardware counters (where applicable) compared to
software counters?

(d) (1p) Modern tool-suites for performance analysis of parallel programs consist of a collec-
tion of several kinds of tools. Give four di�erent kinds of such tools. (I.e., no concrete
tool names, but a short term saying what each kind of tool does.)

(e) (1p) When is a parallel algorithm for some problem (asymptotically) work-optimal? (give
a formal de�nition)

(f) (1.5p) Give a simple example of some (not necessarily elegant) parallel algorithm (com-
mented pseudocode and analysis) for a problem of your choice, which is not cost-optimal.
Justify your answer.

Keep it really simple. Shared-memory will be most appropriate.

2. (4 p.) Parallel program design methodology

Foster's design methodology consists of four stages. Name and explain them. Give details
about their goals. What are the important properties of the result of each stage? Be thorough!

2



3. (3.5 p.) OpenMP Example

A novice OpenMP programmer has written the following erroneous program for calculating∑N
i=1(1/i):

#include <omp.h>

#include <stdio.h>

#define N 100000000

double s = 0.0;

int main()

{

int i;

#pragma omp parallel private(i)

{

#pragma omp for schedule(static)

for (i=1; i<=N; i++)

s = s + 1.0/(double)(i);

}

printf("Sum: %lf\n", s );

return 0;

}

(a) The programmer uses static scheduling of the parallel loop iterations. Explain how the
iterations are mapped to the executing threads. (0.5p)

Taking the program as it is (ignoring the correctness problem below), is static scheduling
of the loop appropriate here? Explain why or why not. (0.5p)

(b) The program prints an incorrect result if executed on more than one processor. Where
is the bug, and what goes wrong? (1p)

(c) There are several possible �xes to this problem, which di�er considerably in their e�ect
on performance. Suggest a correct solution (code) that should lead to best achievable
performance with multiple processors, and explain why.
(1.5p; a correct but suboptimal solution with explanation gives 0.5p)

3



(In case of questions about the following two assignments please ask Marco Kupiainen in the �rst hand.)

4. (6 p.) The problem

duj

dt
+ D0uj(t) = 0 j = 2, 3, 4, . . . , N − 1

with boundary data u1(t) = 1, uN (t) = uN−1(t), is an approximation of the partial di�erential
equation ut + ux = 0, with boundary data u(0, t) = 1. The centered di�erence operator is
given by

D0uj =
uj+1 − uj−1

2∆x

Use message-passing for your solution.

(a) Draw a picture and explain how the array u[N], representing the solution uj can be
distributed onto p processors. (2 p.)

(b) Write down the algorithm to evaluate D0uj at all points, j = 2, 3, . . . , N − 1, for the
array distributed on the parallel computer. (2 p.)

(c) What changes would be necessary in (a) and (b) if we replace the boundary conditions
by the periodic u1 = uN? Think especially about the type of send-receive needed in (b).
(2 p.)

5. (9 p.) Assume that we are given two grids covering a domain of computation, and that
we have a computer with two processors. Grid 1 has n1

i × n1
j × n1

k points, and grid 2 has
n2

i × n2
j × n2

k points. (Hint: these 1, 2 are upper indexes, no exponents).

We have the array u[g]ni,j,k ≈ u(t0 + (n− 1)∆t, x0 + (i− 1)∆x, y0 + (j− 1)∆y, z0 + (k− 1)∆x)
de�ned on the grid g = 1, 2, which is the solution of a partial di�erential equation. Taking
one time step involves only direct neighbors in all three directions,

u[g]n+1
i,j,k = S(u[g]ni+1,j,k, u[g]ni,j,k, u[g]ni−1,j,k, u[g]ni,j+1,k, . . .)

We consider two di�erent schemes to distribute the domain, i.e. the two grids and thus the
two arrays u[g], g = 1, 2, across the two processors. Assume that the time to evaluate the
di�erence scheme S in one grid point is given by Cta, where C is a constant and ta the time
to do one arithmetic operation on the computer. Write down a formula for the time it takes
to do one time step for the following cases (a) and (b):

(a) The two grids (arrays) are each split into two equal-sized blocks that are distributed on
the machine, i.e., each processor holds n1

i /2×n1
j ×n1

k points (elements) of Grid 1 (array
u[1]) and n2

i /2× n2
j × n2

k points (elements) of Grid 2 (array u[2]) (3 p.)
[Hint: here you should include the time it takes to communicate the overlap boundary
between processors. We do not consider the possible communication between the two
grids (arrays) and assume for simplicity that they are processed independently of each
other.]

(b) Grid 1 (entire array u[1]) is assigned to processor 1 unsplit, and Grid 2 (entire array u[2])
is assigned to processor 2 unsplit. (3 p.)

(c) Which approach is best if grid 1 holds 100 × 100 × 100 points and grid 2 holds 150 ×
100× 100 points? Assume C = 200, ta = 10−9, ts = 10−6, tw = 10−8. (3 p.)

4



6. (5 p.) MPI

(a) (2 p.) MPI supports nonblocking (also called incomplete) point-to-point communication.
What does that mean?

Give an example scenario demonstrating how using a nonblocking send (MPI_Isend) or
receive (MPI_Irecv) routine instead of their blocking counterpart could speed up program
execution. What kind of routine is necessary with nonblocking communication if we need
to make sure that data dependences are preserved?

(b) (1 p.) Give two good reasons for using collective communication operations instead of
equivalent combinations of point-to-point communication (MPI_send and MPI_receive)
operations.

(c) (2 p.) One-sided communication in MPI

i. Explain the principle of one-sided communication in MPI-2. (1p)
Hint: You might want to illustrate your answer with a pseudocode example and/or
an annotated picture.

ii. Why is one-sided communication considered being �closer� to the shared-memory
programming model than ordinary two-sided message passing? (0.5p)

iii. How does one-sided communication still di�er from the shared-memory programming
model? (0.5p)

7. (1.5 p.) OpenMP

(a) What is the memory consistency model guaranteed by OpenMP implementations? (short
answer) (0.5p)

(b) Why is the design of OpenMP helpful for incremental parallelization of sequential codes?
(1p)

8. (5.5 p.) Parallel computer architecture

(a) (0.5p) What does Moore's Law really say? Be precise!

(b) How is the (theoretical) peak performance of a parallel computer system de�ned? (0.5p)

(c) Identify two important trends in supercomputer architectures that can be derived from
the (recent) TOP-500 lists. (1p)

(d) Given an application with a �xed performance requirement (in GFlops). Why can,
provided that the application can be parallelized (work-)e�ciently, the transition from
a single-core to a multicore execution platform be advantageous from a power e�ciency
point of view? (1p)

(e) Explain the write-invalidate protocol used to achieve sequential consistency in a cache-
based shared-memory system with a bus as interconnection network. (1.5p)

(f) Give an example of a scalable interconnection network topology (name and sketch) where
the node degree is constant, independent of the number of nodes. What is the advantage
of a constant node degree? (1p)

5


