“£ Forsattsblad till skriftlig
tentamen vid Linképings Universitet

(fylls i av ansvarig)

Datum for tentamen 2010 - 08 — 17

Sal TER1

Tid 14:00 — 18:00

Kurskod TDDC738

Provkod TENI

Kursnamn/benimning Programmering av parallelldatorer
— metoder och verktyg

Institution IDA

Antal uppgifter som 7

ingar i tentamen

Antal sidor pa tentamen |5

(inkl. forsittsbladet)

Jour/Kursansvarig

Christoph Kessler, Henrik Branden

Telefon under skrivtid

Se tickbladet (sida 1) av tentan

Besoker salen ca kl.

Se tiackbladet (sida 1) av tentan

Kursadministrator
(namn + tfnnr + mailadress)

Gunilla Mellheden, IDA, 2297,
gunme @ ida.liu.se

Tillatna hjilpmedel

Engelsk ordbok

Ovrigt
(exempel nir resultat kan ses pa

webben, betygsgriinser, visning,
ovriga salar tentan gar i m.m.)

Se tackbladet (sida 1) av tentan

TENTAMEN / EXAM

TDDC78/TANAT7
Programmering av parallelidatorer /
Programming of parallel computers

2010-08-17, 14:00-18:00, TERI

Christoph Kessler and Henrik Brandén
Dept. of Computer Science (IDA), Dept. of Mathematics (MAI)
Linkdping University

Hjilpmedel / Allowed aids: Engelsk ordbok /
dictionary from English to your native language

Examinator: Christoph Kessler (TDDC78), Henrik Brandén (TANAT7)

Jourhavande ldrare:
Christoph Kessler (IDA) 013-28-2406; 0703-666687; visiting at ca. 16:00
Henrik Brandén {MAI) 013-28-5759; 0706-011969; visiting at ca. 16:00

Maximalt antal pofing / Max. #points: 40

Betyg / Grading (prel.): MatNat C,D, Y, DI ECTS-graded students®
< 20 U < 20 U FX
20-30 G 20 - 27 3 C
31 -40 VG 28 - 33 4 B
34 - 40 5 A

“Swedish grades will be automatically translated to the ECTS marks for
exchange and international master program students as given above, accord-
ing o a decision by the LitJ rector in 2008.

General instructions

e Please use a new sheet for each assignment. Number all your sheets, and mark each sheet on top with
your exam 1D number and the course code.

e You may answer in either English or Swedish,

» Write clearly. Unreadable text will be ignored.

e Be precise in your statements. Unprecise formulations may lead to a reduction of points.
+ Motivate clearly all staterments and reasoning.

¢ Explain calculations and sclution procedures.

o The assignments are not ordered according to difficulty.

Note: In the case of questions regarding the assignments 3 to 4, please contact Henrik Brandén in
the first hand; for questions regarding the other assignments, contact Christoph Kessler in the first

hand.

1. (5.5 p.) Performance tools and analysis

{a) (0.5p) Modern processors provide several builé-in hardware counters that allow to collect
certain kinds of performance data. Give one typical example for performance-related

information (about sequential code) that can be obtained from such counters.

(b) (0.5p) Give one typical example for performance-related data about shared-memory par-

allel programs that can be collected using software counters.

(¢) (ip) Modern tool-suites for performance analysis of parallel programs consist of a collec-
tion of several kinds of tools. Give four different kinds of such tools. (Le., no concrete

tool names, but a short term saying what each kind of tool does.)

(d) (1p) There exist several possible causes for speedup anomalies in the performance behav-

ior of paraliel programs. Name and explain one of them.

(e} (2.5 p.) Derive Gustafsson’s law and give its interpretation. Explain how it differs from

Amdahl's law, and for what kind of parallel computations it is more appropriate.

2. (4 p.) Parallel program design methodology

Foster’s design methodology consists of four stages. Name and explain them. Give details
about their goals. What are the important properties of the result of each stage? Be thorough!

3. (6 p.) The sum

P
5=k
ksl

is to be computed using message passing on a distributed memory machine with p processors

organized as a ring. A naive approach is to use the algerithm

do k=1,p~1

transfer a(k) from node k to node k+l

let node k+1 compute a(k+1) = alk) + a(k+l)
end do

(a) What is the speed-up S, and efficiency E, of this algorithm?

(b) Describe the Cascade summation algorithm.

(c) Show that the execution time of the cascade summation algorithm is
Tp=(p—~1)(a+) +ylogp

if p is a power of 2.

4. (9 p.) Consider matrix-matrix multiplication C' = AB on a

(a) distributed memory machine using data parallel programming,
(b) distributed memory machine using message passing, and on a
{¢) shared memory machine using shared memory programming.

(2p)
{2p)

For each case, explain one algorithm of your own choice, including the partitioning and dis-

tribution of data.

gandocount recveount
L

gendbuft

pendhuf

sendbuf recvbuf

Figure 1: Effect of the MPI_A1lgather operation on the processes’ local memories, here shown for
P = 4 Processes.

5. (7p.) MPI

(a) (5.5 p.) The MPT_Allgather operation is a collective communication cperation with the
following parameters:

int MPI_Allgather (void *sendbuf, int sendcount, MPI Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm };

MPI_Allgather is a generalization of MPI_Gather: If executed by a group of p MPI
processes each contributing a Jocal array in sendbuf with sendcount clements of type
sendtype, each of the p processes will afterwards hold a copy of the entire gathered array
in its recvbuf, which is composed of the pxrecvcount elements coming from each send
buffer in the order of the processor ranks. See Figure 1.

Usually, the arguments for seadcount and recvcount and for sendtype and recvtyps,
respectively, are equal in calls to MPI_Allgather. Also, all participating processes must
pass equal argument values for each of these parameters. A typical call could look as
follows:

MPI_Allgather (Arrl, n, MPI_FLOAT, Arr2, n, MPI_FLOAT, MPI_COMM_WORLD J);

i, What is the difference in behavior to MPI_Gather? {0.5p)

ii. Write an implementation of MPI_Allgather using only MPI_Send and MPI_Recv op-
erations (i.e., no other communication operations). Use C, Fortran, or equivalent
pseudocode (explain your language constructs if you are not sure about the right
syntax). Explain your code. {2.5p)

iii. Show how your code behaves by drawing an annotated processor-time diagram for
p = 4 showing when messages are sent from which source to which destination, and
what they contain. (1p)

iv. Let n denote the value of sendcount and recvcount, and assume that the send/recvtype
denotes normal floatingpoint numbers. Analyze asymptotically the (worst-case) por-
allel execution time of your implementation (for arbitrary values of p and n} as a
function in p and n. You may use the delay model, the BSP model or the LogP /
LogGP model for this purpose (state which model you use). If you need to make
further assurnptions, state them clearly. (1.5p)

(b) (1.5p.) Explain the Communicator concept in MP1. How does it support the construction
of parallel software components?

6. (5p.) OpenMP

(2) (3.5 p.) What scheduling methods (3) for paraliel loops are defined in the OpenMP
standard? Explain each of them briefly. When should they be used? How does the user
setting for the chunk size affect the (expected) performance of the dynamic methods?

{b) What is the purpose of the reduction clause in OpenMP parallel loops? Be thorough!
(1.5p)

7. (3.5 p.) Parallel computer architecture

(a) (0.5p) What does Moore’s Low really say? Be precise!
(Hint 1: Does Moore's Law still hold today? -~ Hint 2: Is Moore’s Law a law in the
mathematical sense?)

(b) What kind of parallelism can be exploited efficiently in modern {general-purpose) graph-
ics processing units (GPUs)? (0.5p)

(c¢) Explain the write-invalidate protocol used to achieve sequential consistency in a cache-
based shared-memory system with a bus as interconnection network. (1.5p)

(d) {lp) Explain the Crossbar interconnection network. What are its main strengths and

weaknesses when used as the main interconnection network of a parallel computer archi-
tecture?

