i Forsattsblad till skriftlig

tentamen vid Linkopings Universitet

(fylls i av ansvarig)

Datum for tentamen 2010 - 05 - 27

Sal KARA

Tid 14:00 — 18:00

Kurskod TDDC78
"Provkod TENI1

Kursnamn/benamning Programmering av parallelldatorer

— metoder och verktyg

Institution IDA

Antal uppgifter som 9

ingar i tentamen

Antal sidor pa tentamen |5

E:\-,cnkl. fﬁrSﬁttSbladet)

Jour/Kursansvarig Christoph Kessler, Henrik Branden

Telefon under skrivtid

Se tackbladet (sida 1) av tentan

Besoker salen ca Kkl.

Se tackbladet (sida 1) av tentan

Kursadministrator
(namn + tfnnr + mailadress)

Gunilla Mellheden, IDA, 2297,
gunme (@ ida.liu.se

Tillatna hjalpmedel

Engelsk ordbok

Ovrigt

(exempel nir resultat kan ses pa
webben, betygsgrénser, visning,

Ovriga salar tentan gir i m.m.)

Se tiackbladet (sida 1) av tentan

TENTAMEN / EXAM

TDDC78/TANATT
Programmering av parallelldatorer /
Programming of parallel computers

2010-05-27, 14:00-18:00, KARA

Christoph Kessler and Henrik Brandén
Dept. of Computer Science (IDA), Dept. of Mathematics (MAT)
LinkGping University

Hjilpmedel / Allowed aids: Engelsk ordbok /
dictionary from English to your native language

Examinator: Christoph Kessler (TDDC78), Henrik Brandén (TANATT)

Jourhavande lirare:
Christoph Kessler (IDA) 013-28-2406; 0703-666687; visiting at ca. 16:00
Henrik Brandén {MAI} 013-28-5759; 0706-011969; visiting at ca. 16:00

Maximalt antal poiing / Max. #points: 40

Betyg / Grading (prel.): MatNat C, DY, DI ECTS-graded students®
<20 U < 20 U FX
20-30 G 20 - 27 3 C
3t ~40 VG 28 - 33 4 B
34 - 40 5 A

2Swedish grades will be automatically translated to the BCTS marks for
exchange and international master program students as given above, accord-
ing to a decision by the LiU rector in 2008.

General instructions

o Please use a new sheet for each assignment. Number all your sheets, and mark each sheet on top with
your exam ID number and the course code.

e You may answer in either English or Swedish.

Write clearly. Unreadable text will be ignored.

o Be precise in your statements. Unprecise formulations may lead to a reduction of poiats.

Motivate clearly all statements and reasoning.

*

Explain calculations and sclution procedures.

L

The assignments are not ordered according to difficuity.

Note: In the case of questions regarding the assignments 4 to 5, please contact Henrik Brandén in
the first hand; for questions regarding the other assignmentis, contact Christoph Kessler in the first
hand.

1. (5 p.) Performance tools and analysis
(a) (1p) Give two typical examples for kinds of performance-related data about message
passing programs that can be collected using soffware counters.

(b) (1p) Modern tool-suites for performance anslysis of parallel programs consist of a collec-
tion of several kinds of tools. Give four different kinds of such tools. (l.e., no concrete
tool names, but a short term saying what each kind of tool does.)

(c) (1p) There exist several possible causes for speedup anomalies in the performance behav-
ior of parallel programs. Name and explain one of them.

(d) (2 p.) Derive Amdahl’s law and give its interpretation.
(NB — a picture is nice but not a proof; give a calculation. }
2. (2 p.} Parallel programming models

Explain the parallel program execution styles fork-join and SPMD, and explain the main
difference. (1p)

Which one is more comfortable for the programmer, and why? (0.5p)

Which one is used (at top level) in OpenMP (short explanation}? (0.5p)

3. (4 p.) Parallel program design methodology

Foster’s design methodology consists of four stages. Name and explain them. Give details
about their goals. What are the important properties of the result of each stage? Be thorough!

4. (6 p.) In FORTRAN 90, a SAXPY operation can be implemented as
y(1:n) = a*xx(L:n) + y(i:n)
In FORTRAN 77, the same operation looks like

do i=1,n
y(i) = axx{i) + y(i)
end do

(2) What is the benefit of the FORTRAN 90 notation? (1p)

Consider data parallel programming on a distributed memory machine with p processors
organized as a ring. Assume a vector length n = rp for some integer 7 > 0.

(b) How is the given FORTRAN 90 code executed in terms of communication, synchroniza-

tion, and arithmetics? : (2p)
(¢) What is the efficiency E,? (2p)
(d) Is the operation scalable? Motivate your answer! (1p)

5. (9 p.) Consider matrix-vector multiplication y = Az on a

(a) distributed memory machine using data parallel programming, (3p)
(b) distributed memory machine using message passing, and on & (3p)
(c) shared memory machine using shared memory programming. (3p)

For each case, explain one algorithm of your own choice, including the partitioning and dis-
tribution of data.

6. (7 p.) MPI

(a) (5.5 p.) The MPI_Allreduce operation is a collective communication operation with the
following parameters:

int MPI_Allreduce { void *sendbuf, void #recvbuf,
int count, MPI_Datatype elemtype,
MPI_{p op, MPI_Comm comm);

where op is a pointer to a function combining two elements of type elemtype into a
single element of the same type. Examples of predefined combine functions in MPI are
MPI_MAX (maxirum), MPI_SUM {sum)} or MPI_LAND (logical AND).

MPI_Allreduce works as follows: If executed by a group of p MPI processes, with each
process 4 contributing a local array [0 : m — 1] in sendbuf with count= m elements
of type elemtype, for i = 0,...,p — 1, each of the p processes will afterwards hold, in its
array recvbuf with m elements of same type elemtype, an array 5[0 : m — 1] that is the
elementwise op-combination of the operand arrays sg, ..., $p—1, i.e.,

ris] = solj] op s1lf) op ... op sp-1[f] for j=0,..,count ~1landi=0,..,p— 1L
All processes of the group executing a call to MPI_Allreduce must pass in equal argument
values for count, elemtype and op, respectively. A typical call could look as follows:

MPI_Allreduce (S, R, m, MPI_FLOAT, MPI_SUM, MPI_COMM_WORLD);

i. What is the difference in behavior to MPI_Reduce? (0.5p)

ii. Write an implementation of MPI_Allreduce using only MPI_Send and MPI_Recv op-
erations. Use C, Fortran, or equivalent pseudocode {explain your language constructs
if you are not sure about the right syntax). Explain your code. (2.5p)

(Note: There exist several possibilities. An algorithm that is time-optimal for large p
gives a 1p bonus, provided that the analysis is correct and the optimality is properly
motivated.)

Show how your code behaves over time by drawing a processor-time diagram for
p = 4 showing when messages are sent from which source to which destination, and
what they contain. (0.5p)

Let m denote the value of count, and assume that the elemtype is MPI_FLOAT
(normal fioatingpoint numbers) and that any call to function op executes in time
top, where to, € O(1). Analyze asymptotically the (worst-case) parallel ezecution
time and the parallel work of your implementation (for arbitrary values of p and m)
s a function in p and m. You may use the delay model, the BSP model or the LogP
/ LogGP model for this purpose (state which model you use}. If you need to make
further assurnptions, state them clearly. (2p)

Hint: Communication contributes to the work done by a parallel algorithm.

(b) (1.5 p.) Explain the principle of one-sided communication in MPI-2.

7. (1.5 p.) Grid Computing

(a) (1 p.) What sort of applications (with what kind of parallelism) can use compiutational
grids effectively?

(b) (0.5 p.) Name one task performed by grid middleware.

8. (3 p.) OpenMP

(a) What kind of paraliel loops are suitable candidates for dynamic scheduling? Why? (Ip)

(b} (2 p.) What is the purpose of the flush directive in OpenMP? Give a short example to
illustrate how it is used. Name at least one technical cause that makes the explicit use
of £iush in the program necessary to guarantee a correct program execution.

9. (2.5 p.) Parallel computer architecture
(a) Explain the write-invalidate protocol used to achieve sequential consistency in a cache-
based shared-memory system with a bus as interconnection network. (1.5p)

(b) (1p) Give an example of an interconnection network topology (name and sketch) where
the node degree grows logarithmically in the number of nodes.

