S Forsattsblad till skriftlig

tentamen vid Linkdpings Universitet

(fylls i av ansvarig)

(inkL forsittsbladet)

Datum for tentamen 2010—-01-11

Sal R34

Tid 08:00 — 12:00

Kurskod TDDC78

Provkod TEN1

Kursnamn/benimning Programmering av parallelldatorer
— metoder och verktyg

Institution IDA

Antal uppgifter som 11

ingar i tentamen

Antal sidor pa tentamen 6

Jour/Kursansvarig

Christoph Kessler, Lars Elden

_ Jelefon under skrivtid

Se tackbladet (sida 1) av tentan

Besoker salen ca kl.

Se tiackbladet (sida 1) av tentan

Kursadministrator
(namn + tfnnr + mailadress)

Gunilla Mellheden, IDA, 2297,
gunme (@ 1da.lu.se

Tillatna hjilpmedel

Engelsk ordbok

Ovrigt

ovriga salar tentan gir i m.m.)

(exempel niir resultat kan ses pa
webben, betygsgriinser, visning,

'Se tickbladet (sida 1) av tentan

TENTAMEN / EXAM

TDDC78/TANAT7
Programmering av parallelldatorer /
Programming of parallel computers

2010-01-11, 08:00-12:00, R34 / R44

Christoph Kessler och Lars Eldén
Institutionen for datavetenskap, Matematiska institutionen
Tekniska Hogskolan i Linkdping

Hjalpmedel / Allowed aids: Engelsk ordbok /
dictionary from English to your native language

Examinator: Christoph Kessler (TDDC78/TDDB78), Lars Eldén (TANATT)

Jourhavande MEirare:
Christoph Kessler (IDA) 013-28-2406; 0703-666687; visiting at ca. 09:30
Lars Elden (MAI) 013-28-2183; 0760-248842

Maximalt antal poiing / Max. #points: 40

Betyg / Grading (prel.): MatNat C,D, Y, DI ECTS-graded students® -
< 20 U < 20 U FX
20-3¢ G 20 ~ 27 3 C
31-40 VG 28 ~ 33 4 B
34 — 40 5 A

=Swedish grades wiil be automatically translated to the ECTS marks for
exchange and international master program students as given above, accord-
ing to a decision by the 14U rector in 2008.

General instructions

o Please use a new sheet for each assignment. Nurnber all your sheets, and mark each sheet on top with
your exam ID number and the course code.

o You may answer in either English or Swedish.

o Write clearly. Unreadable text will be ignored.

»

Be precise in your statements. Unprecise formulations may lead to a reduction of points.

Motivate clearly all statements and reasoning.
e Explain calculations and solution procedures.

o The assignments are not ordered according to difficulty.

1. (4 p.) Performance tools and analysis

(a) (1p) There exist several possible causes for speedup anomalies in the performance behav-
ior of parallel programs. Name and explain one of them.

(b) (3 p.) Given a message-passing system with P = 4 processors connected by a star network
(i.e., there is a direct communication link between any two processors), and o = 2us,
g = 3us, I = Bus. Assume that each processor initially generates a single number
(32-bit integer) at time 0. How long does it take at least to find a minimu of these
P values among the processors and to store a copy of the minimum on all processors?
Use the LogP communication cost model, and draw the processor network graph and a
processor-time diagram to explain your answer. (2.5p)
What is the technical term for the communication pattern(s) used in this parallel com-
putation? (0.5p)

2. (2 p.) Parallel programming models

Explain the parsllel program execution styles fork-join and SPMD, and explain the main
difference. (Ip}

Which one is more comfortable for the programmer, and why? (0.5p)
Which one is used in OpenMP (short justification)? {0.5p)

3. (4 p.) Parallel program design methodology

Foster’s design methodology consists of four stages. Name and explain them. Give details
about their goals. What are the important properties of the result of each stage? Be thorough!

4. (1.5 p.) Parallel algorithm design

Explain the algorithmic paradigm parallel divide-and-conguer, and give an example of a par-
allel algorithm (short description of the idea, no details) where this paradigm is used.

5. (b points) Assume that we have a very large data base of face images F(1:n) and that we
want to identify an unknown person, i.e, given a photo Z of the unknown person we want to
find the image in the data base for which the distance dist(Z-F(1)) is as small as possible,
The computation of a distance function is agsumed to be expensive.

mindist=dist(Z-F(i))
minpers=1
do i=2,n
if dist(Z~F(i)) < mindist then
mindist= dist(Z-F{i))
minpers=i
endif
enddo

Write a pseudocode that paralielizes this computation on a message-passing system? Explain
carefully all aspects of your parallelization. Sketch the code using MPI-like communication.

6. (4 points) The following Fortran code was executed on a certain computer.

integer, parameter 11 n=1600
real, dimension(n) X,V
real, dimension{(n,n} :!: a

1 ... A is given values

call cpu_time{z0)

do i=1,n
x(1)=sum(ali,i:n))

enddo

call cpu_time(tl)

trows=t1-t0

do i=1,n
y{i)=sum(a(l:n,1i))

enddo

call cpu_time(t2)

tcole=t2-tl

write(*,*)trows,tcols

end

We got the following results:

0.418555021, 0.16701801

Explain carefully the difference in timing! What is the cause? Fxplain the principles of the
computer mechanism that causes the difference (without going into hardware details). Is it
likely that the same effect will be seen on computers five years from now? Explain why!

. (6 p.) The following is an OpenMP code for matrix-vector multiplication, where the matrix

is m x n. It is assumed that 7 is a multiple of the number of threads.

y{il:m)=0.

1$omp parallel private(?)
nthr=omp_get_num_threads()
g=n/nthr ! Number of vectors

! in each chunk
myid=omp_get _thread_num()
first=myld*q+l
last=(myid+1)*q
yp{l:m}=0, ! Partial sum
do j=first,last
yp(l:m)=yp(L:m)+a(lm,j)*x(j)

enddo
y(1m)=y(1:m)+yp(Ll:m)

t$omp end parallel

(a) Which variable(s) must be made private? Explain carefully!
{b) Explain in detail why the code does not give the correct answer!

{c) Modify the code so that it gives the right answer (if you do not remember the syntax,

explain in detail what the modification is supposed to do)!

sendcount regyeount
e e

o] s
sendbuf reavbuf

Pl | TRl] - EEEE
sendbuf reavbuf

P2 | c | . B
gendbuf recvbuf

| a B

recvbuf

Figure 1: Effect of the MPI_Allgather operation on the processes’ local memories, here shown for
p = 4 processes.

8. (6 p.) MPI

(a) {5 p.) The HPI_Allgather operation is a collective communication cperation with the
following parameters:

int MPI_Allgather (void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm);

MPI_Allgather is a generalization of MPI_Gather: If executed by a group of p MPI
processes each contributing a local array in sendbuf with sendcount elements of type
sendtype, each of the p processes will afterwards hold a copy of the entire gathered array
in its recvbuf, which is composed of the pxrecvcount elements coming from each send
buffer in the order of the processor ranks. See Figure 1.

Usually, the arguments for sendcount and recvcount and for sendtype and recvtype,
respectively, are equal in calls to MPI_Allgather. Also, all participating processes must
pass equal argument values for each these parameters. A typical call could look as follows:

MPI_Allgather { Arrl, n, MPL_FLOAT, Arr2, n, MPI_FLOAT, MPI_COMM_WORLD);

i. What is the difference in behavior to MPI_Gather? (0.5p)

ii. Write an implementation of MPI_Allgather using only MPI_Send and MPI_Recv op-
erations. Use C, Fortran, or equivalent pseudocode (explain your language constructs
if you are not sure about the right syntax). Explain your code. (2.5p}

Show how your code behaves by drawing a processor-time diagram for p = 4 showing
when messages are sent from which source to which destination, and what they
contain. (0.5p)

Let n denote the value of sendcount and recvcount, and assume that the send/recvtype
denotes normal floatingpoint numbers. Analyze asymptotically the {worst-case) par-
allel ezecution time of your implementation (for arbitrary values of p and n) as a.
function in p and n. You may use the delay model, the BSP model or the LogP /
LogGP model for this purpose (state which model you use). If you need to make
further assumptions, state them clearly. (1.5p)

(b} (1 p.) Give two good reasons for using collective communication operations instead of
equivalent combinations of point-to-point communication (MPI_send and MPI_receive)
operations.

9. (2.5 p.) Grid Computing
(2) (1 p.) What sort of applications (with what kind of parallelism) can use computational
grids effectively?
(b) (1.5 p.) What is the purpose of grid middleware? What kind of tasks does it perform?

10. (8 p.) OpenMP

(2) What kind of parallel loops are suitable candidates for static scheduling? Why? (1p)

(b) (2 p.) What is the purpose of the £lush directive in OpenMP? Give a short example to
illustrate how it is used. Name at least one technical cause that makes the explicit use
of filush in the program necessary to guarantee a correct program execution.

11. (2 p.) Parallel computer architecture

{a) What kind of parallelism can be exploited efficiently in graphics processing units (GPUs)?
(0.5p)

(b) (1.5 p.)
(i) Give an example of an interconnection network topology (name and sketch) where
the node degree is bounded by a constant.
(ii) What is the advantage of a constant node degree?

