Forsittsblad till skriftlig
tentamen vid Linkopings

universitet
Datum for tentamen ~ |2016-10-25
Sal (3) TER1 TER2 TERE
nd 1418
Kurskod [TDDC17
Provked | CJTENL
Kursnamn/benimning |Artificiell intelligens
Provnamn/beniimning ~ |En skriftlig tentamen
Institution |IDA |
Antal uppgifter som ingdr i .
tentamen .
Z;gf:rgss;;vggggker salen OIOV Andersson
|Telefo_n”under skrivtiden B |O70 574 33 43
[Besiker salen caklockan feakl16
Kursadministratiir/kontaktperson% Anna Grabska Eklund, anna.grabska.éklund@liu.se;
(namn + tfnr + mailaddress) Jankn. 2362 ,
[Tillitna hjilpmedel [Miniréknare/Hand calculators
Ovrige. |

IAntal exemplar i pisen (

Forsittsblad till skriftlig
tentamen vid Linkopings

universitet

Datum fijr tentamen

2016-10-25

Sal 3) TER1 TER2 TERE
Tid [14-18

Kurskod |TDDC17

Provkod TEN1
Kursnamn/benamnmg |Artificiell mtelllgens
Provnamn/bendmning |[En skriftlig tentamen
Institution t IDA

Antal uppglfter som ingér i B .
tentamen

xllg;a/l\feunl;ss:riv‘sggker salen Olov Andersson
{Telel’on un’clle’f’skrivtiden 1070 57433 43 |
lBesoker salen ca klockan | Ica kl. 16 |

Kursadmmlstrator/kontaktperson Anna Grabska Eklund anna. grabska eklund@hu se,
(namn + tfir + mailaddress)

llankn. 2362

[Tillitna hjilpmedel

|M1n1raknare/Hand calculators

|Ovrlgt

| ‘

lAntal exemplar i pasen

Forsittsblad till skriftlig
tentamen vid Linkopings

universitet
[Datum for tentamen) 2016-10-25
Sal (3) TER] TER2 TERE
Tid 1418
Kurskod ~ |TDDC17
Provked _ [TENL
Kursnamn/benimning Artificiell intelligens
Provnamn/benéimning En skriftlig tentamen
Institution ,, ~ |IDA
Antal uppgifter som ingdr i]
tentamen o
i(;ugl;:/l\f:n?::;‘lgggker salen _ Olov @dersson
[Telefon under skrivtiden 0705743343
[Besiker salen caklockan Jleakl.l6
Kursadministratér/kontaktperson |Anna Grabska Eklund, anna.grabska.eklund@liu.se, |
(namn + tfr + mailaddress) |ankn. 2362 | |
[Tillitna hjilpmedel [Minirdknare/Hand calculators
Owrige [

Ee|Antal exemplar i pisen , l

Linkopings Universitet
Institutionen fér Datavetenskap
Patrick Doherty

Tentamen

TDDC17 Artificial Intelligence
25 October 2016 k1. 14-18

Points:
The exam consists of exercises worth 38 points.
To pass the exam you need 19 points.

Auziliary help items:
Hand calculators.

Directions:
You can answer the questions in English or Swedish.
Use notations and methods that have been discussed in the course.
In particular, use the definitions, notations and methods in appendices 1-5.
Make reasonable assumptions when an exercise has been under-specified.
State these assumptions explicitly in your answer.
Begin each exercise on a new page.
Write only on one side of the paper.
Write clearly and concisely.

Jourhavande: Olov Andersson, 070 574 3343. Olov will arrive for questions around 16.00.

1. The following questions pertain to the course article by Newell and Simon entitled Computer Science
as an Bmpirical Enquiry: Symbols and Search.

(2) What is a physical symbol system (PSS) and what are its structural and conceptual components?
(2p]

(b) What is the Physical Symbol System Hypothesis? [1p]

(c) Do you think the Physical Symbol System Hypothesis provides an adequate description of the
structural and conceptual components required for a system exhibiting intelligence? Provide
reasonable justifications for your opinion. [1p]

(d) What is the heuristic search hypothesis? [1p]
9. Consider the following logical theory about registered voters (where fred, ted and samantha are con-

stants) and we view grounded atomic formulas as propositional atoms. (In this case unification of two
grounded atomic formulas is successful when they are identical.):

Democrat(fred) 1)
Likes(fred, ted) (2)
Likes(ted, samantha) (3)
(Lz’kes(fred,ted) A Likes(ted, samantha)) — Likes(fred, samantha) 4)
~(=Republican(samantha) A —~Democrat(samantha)) (6)
—Democrat(samantha) (6)

We would like to show using resolution that a registered Democrat likes a registered Republican. To
do this, answer the following questions:
(a) Convert formulas (1) - (6) into conjunctive normal form (CNF) with the help of appendix 1. [1p]

(b) Prove that (Democrat(fred) A Republican(samantha) A Likes(fred, samantha)) is a logical conse-
quence of (1) - (6) using the resolution proof procedure. [3p]

e Your answer should be structured using one or more resolution refutation trees (as used in
the book or course slides).

3. Constraint satisfaction (CS) problems consist of a set of variables, a value domain for each variable
and a set of constraints. A solution to a CS problem is a consistent set of bindings to the variables
that satisfy the constraints.

(a)

Suppose there are 5 territories T1, T2, T3, T4, and T5, each with a sensor that monitors the area
associated with that territory. Each sensor has three possible radio frequencies, F1,F2, F3. Sensors
overlap if they are in adjacent areas. The adjacency relation between two territories is symmet-
ric. Let Adj(z,y) represent the adjacency relation where Adj(7T'1,72), Adj(T'1,T3),Adj(T'2,T3),
Adj(T'3,T4). If two sensors overlap, they can not use the same frequency.

1. Define a constraint satisfaction problem for this scenario. [1p]
2. Provide a constraint graph for the CS problem. [1p]
3. Provide one solution for the CS problem. [1p]

Provide an example of a constraint problem with a constraint graph that is arc-consistent but has
no globally consistent solutions. [1p]

Figure 1 depicts a constraint graph with variables A, B, C, D, E, each with a value domain
{1,2,3,4}. Binary constraints are associated with each arc and domain constraints are associated
with each node. The graph is domain consistent but not arc-consistent.

Make the constraint graph in figure 1 arc consistent. You can use the AC3 algorithm in Appendix
5 to help you. For the answer, only the resulting consistent bindings for each variable in the
constraint graph are required. [2p]

{1.2,3,4}

Figure 1: Constraint graph that is domain consistent but not arc consistent

4. The following questions pertain to automated planning.

(a)
(b)

What is satisficing planning? Do satisficing planners typically require admissible heuristics? Why
or why not? [2p]

Relaxation is an important method for finding admissible heuristic functions. Describe two ways
in which relaxation can change the state space of a problem in order to preserve all solutions but
also introduce new solutions. [2p]

5. A* search is the most widely-known form of best-first search. The following questions pertain to A*
search:

(a)
(b)

Explain what an admissible heuristic function is using the notation and descriptions in (c). [1p]

Suppose a robot is searching for a path from one location to another in a rectangular grid of
locations in which there are arcs between adjacent pairs of locations and the arcs only go in
north-south (south-north) and east-west (west-east) directions. Furthermore, assume that the
robot can only travel on these arcs and that some of these arcs have obstructions which prevent
passage across such arcs.

Provide an admissible heuristic for this problem. Explain why it is an admissible heuristic and
justify your answer explicitly. [2p]

Let h(n) be the estimated cost of the cheapest path from a node 7 to the goal. Let g(n) be the
path cost from the start node ng to n. Let f (n) = g(n) + h(n) be the estimated cost of the
cheapest solution through n.

Provide a sufficiently rigid proof that A* is optimal if h(n) is admissible. You need only provide
a proof for either tree-search (seminar slides) or graph-search (in course book). If possible, use a
diagram to structure the contents of the proof to make it more readable. [2p]

6. The following questions pertain to machine learning. Give detailed answers. Appendix 4 may be
helpful to use.

(a)
(b)

(c)

Assume a supervised learning problem from examples (z,%), where the outputs y belong to the
real numbers. Give a suitable loss function for training a simple linear model. [1p]

Assume you are training a classic fully-connected feed-forward neural network with p parame-
ters. Using the backpropagation algorithm to compute loss gradients, what is the computational
complexity per example? [1p]

Assume a Q-learning agent in the environment below. Actions are { Up, Down, Left, Right} and
the transition function is deterministic (no uncertainty). The numbers in the squares represent
the reward the agent is given in each state and the black square is impassable. The gray square
(3,3) is a terminal state where the episode ends, and the Q-table for its actions can therefore be
assumed fixed to its reward.

The agent always starts each episode in the lower right corner (3,1), follows the simple policy of
always going up to the terminal state, and then starts the next episode. Using the Q-learning
formula (see appendix) with a discount factor of 0.9 and learning rate of 1, compute the utility
of going Up from the starting state. Show the steps of your calculation.[2p]

7. The following questions pertain to Answer Set Programming. Appendix 3 may be useful to use:

(a) Given the program IIj, consisting of the following rules (where ted is a constant):
rl: tiger(ted).
12: killer(ted) < tiger(ted), not ab(ted).
r3: tame(ted).
r4: ab(ted) « tame(ted).

1 what is the reduct I for IT; given that S = {tiger(ted),ab(ted)}? [1p]
2 what is the reduct II$ for II; given that S = {tiger(ted), tame(ted)}? [1p]
(b) Given the program IT consisting of the following two rules (where republican, democrat are con-
stants):
rl: registered(republican) + not registered(democrat)
12: registered(democrat) < not registered(republican).

What are the possible answer sets for II,? [1p]

(c) Given the possible answer sets for Il above, which of those possible answer sets are in fact answer
sets for program II,? [2p]
When answering this question be sure to show why, by using the reducts, Hg", where S; is
instantiated to each possible answer set, and the consequence operator Tq described in appendix
3.

(d) Why is Answer Set Programming considered to be a nonmonotonic reasoning formalism? [1p]

8. Use the Bayesian network in Figure 2 below together with the associated conditional probability tables
to answer the following questions. Appendix 2 may be helpful to use. If you do not have a hand-held
calculator with you, make sure you set up the solution to the problems appropriately for partial credit.

The conditional probability tables (CPT) should be interpreted as follows: For each row in a CPT,
the left-hand side enumerates the values of the evidence variables, and each column in the right-hand
side provides the probability of the query variable for each possible value of the query variable. For
instance, for the CPT associated with the random variable SP, the first row denotes that P(SP =
High | SM = Good, OI = Good,) = 0.80 and P(SP = Low, | SM = Good,,0I = Good,) = 0.20.

(a) Given the Bayesian network below, write down the full joint distribution it represents. In other
words, define P(SP, SM,OI, IR) as a product of the conditional relationships that can be derived
from the network below. [1p]

(b) What is P(SP = High, SM = Good, Ol = Bad,IR = High)? [1p]
(c) What is P(SP = High | SM = Bad, IR = High)? [2p]

PAR)| High Low
025 075
IR:
Interest Rate
P(SMIIR)] Good Bad
High 020 0380
Low 070 030

SM:
Stock Market

SP:
0il Company
Stock Price

P(OI)

Good

Bad

0.40

0.60

P(SPISM, OD)| High Low

Good, Good 0.80 020
Good, Bad 060 040
Bad, Good 0.50 0.50
Bad, Bad 0.10 090

Figure 2: Bayesian Network Example

Appendix 1

Converting arbitrary wifs to CNF form:

(Propositional/grounded 1st-order formula case)

1. Eliminate implication signs using the equivalence: o — B=-aVp.

2. Reduce scopes of negation signs using De Morgan’s Laws:

. —-1(0.)1 \4 wz) = —wy A —we

. —|(w1 A wg) = —wi V "wa

3. Remove double negations using the equivalence: - = .

4. Put the remaining formula into conjunctive normal form. Two useful rules are:

o w1 V(w2 Aws) = (w1 Vwe) A (w1 Vws)
e w1 A (UJ2 V(U3) = (w1 /\wg) \Y (w1 /\(A)3)

5. Eliminate A symbols so only clauses remain.

Appendix 2

A generic entry in a joint probability distribution is the probability of a conjunction of particular assignments
to each variable, such as P(X; = z1 A ... A X, = z,). The notation P(zi,...,z,) can be used as an
abbreviation for this.

The chain rule states that any entry in the full joint distribution can be represented as a product of conditional
probabilities:

n

P(ml;-uymn):HP(fEilmi-—l,---,ml) (7)
i=1

Given the independence assumptions implicit in a Bayesian network a more efficient representation of entries
in the full joint distribution may be defined as

n
P(zy,...,2,) = HP(IL‘,; | parents(X;)), (8)
i=1
where parents(X;) denotes the specific values of the variables in Parents(X;).
Recall the following definition of a conditional probability:

P(X AY)
The following is a useful general inference procedure:

Let X be the query variable, let E be the set of evidence variables, let e be the observed values for them,
let Y be the remaining unobserved variables and let @ be the normalization constant:

P(X|Y)=

P(X |e)=aP(X,e) = aZP(X,e,y) (10)

Yy

where the summation is over all possible y’s (i.e. all possible combinations of values of the unobserved
variables Y).
Equivalently, without the normalization constant:

P(X,e) S PX.ey) w

PEIQ)="pE) ~T.5,Prey)

Appendix 3: Answer Set Programming

Computing Answer Sets for a program II:

Given a program II:
1. Compute the possible answer sets for II:
(a) Powerset 2™ of all atoms in the heads of rules in IL
2. For each S € 2!:

(a) Compute the reduct II5 of II.
(b) If Cn(T15) = S then § is an answer set for IL.
(c) If On(II%) # S then S is not an answer set for II.

The following definitions may be useful:

Definition 1 A program II consists of a signature &
and a collection of rules of the form:

lgV,...,VI; + li+1,...,lm,n0tlm+1,...,'fLOt ln
where the I’s are literals in . O

Definition 2 [Satisfiability]
A set of (ground) literals satisfies:

1. lifles;
notlif l ¢ S,

V... g if for somel <i<n,l; €5

Ll

a set of (ground) extended literals if S
satisfies every element of this set;

5. rule r if , whenever S satisfies r’s body, it satisfies s head. O

Definition 3 [Answer Sets, Part]
Let II be a program not containing default negation
(i.e., consisting of rules of the form):

loV,...,Vli(—li+1,...,lm.

An answer set of II is a consistent set S of (ground) literals
such that

1. S satisfies the rules of II and

2. S is minimal (i.e., there is no proper subset of S that
satisfies the rules of II. O

Appendix 3 is continued on the next page.

Definition 4 [Answer Sets, Part II]

Let IT be an arbitrary program and S be a set
of ground literals. By ITI® we denote the program
obtained from II by

1. removing all rules containing not [
such that | € S;

2. removing all other premises of the remaining
rules containing not.

S is an answer set of IT if 9 is an answer set of I15.
We refer to IIS as the reduct of II with respect to S. O

Definition 5 [Consequence operator Tjj]

The smallest model, Cn(II), of a positive program II can be computed
via its associated consequence operator I1;. For a set of atoms X

we define,

TnX = {head(r) | r € II and body(r) C X}.
Iterated applications of Ty; are written as Tﬂ for j > 0, where

TAX = X
TEX = TaT5 X fori> 1.

For any positive program II, we have Cn(II) = ;5o T30
Since Ty is monotonic, Cn(Il) is the smallest fixpoint of Ty. O

Appendix 4: Q-learning

Q-learning is a model-free reinforcement learning approach. We use a simplified definition from the course

literature:

Q(st,a1) +— Q(st,as) + a(R(ss) +y Lex, Q(st41,at41) — Q(s¢, 1))

where s; and s;41 are states in a sequence, R(s;) is the reward for state s;, Q(s;,a;) is the estimated utility
of taking action a; in state s, <y is the discount factor and « is a fixed learning rate.

The Q-function is initialized to zero, except for any terminal states where all actions are fixed to the ter-
minal reward. Each time the agent performs an action, it can be updated based on the observed sequence
weey 8t, B(8t), @ty St41, ... The Q-function can then be used to guide agent behavior, for example by extracting

a policy.

Appendix 5: Arc-Consistency algorithm

function AC-3(csp) returns false if an inconsistency is found and true otherwise
inputs: ¢sp, a binary CSP with components (X, D, C)
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(X:, X;) — REMOVE-FIRST(queue)
if REVISE(¢csp, Xi, X;) then
if size of D; = 0 then return false
for each X}, in X; NEIGHBORS - {X;} do
add (X, X;) to queue
return {rue

function REVISE(esp, Xi, X;) returns true iff we revise the domain of X
revised — false
for each z in D; do
if no value y in D; allows (z,y) to satisfy the constraint between X; and X; then
delete z from D;
revised «— true
return revised .

Figure 3: AC3 Arc Consistency Algorithm

10

