Information page for written
examinations at Linkoping University

Examination date 2019-03-23

Room (5) Qi 32(:5 :5) G34(6) TER3(28) TER4(104) TERE(4)
Time 14-18

Edu. code TDDB68§

Module TEN1

Edu. code name
Module name

Concurrent Programming and Operating Systems
(Processprogrammering och operativsystem)
Examination (Tentamen)

Department IDA
Number of questions in
o 6
the examination
Teacher
responmhle!contact Mikael Asplund
person during the exam
time
Contact nl}mber during 0700 895 827
the exam time
Visit to the examination 15-16

room approximately

Name and contact details
to the course
administrator

(name + phone nr + mail)

Veronica Kindeland Gunnarsson
013-28 56 34
adm-gu@ida.liu.se

Equipment permitted

Engelsk ordbok / english dictionary,
Miniriknare / pocket calculator

Other important
information

Number of exams in the
bag

Information page for written
examinations at Linkoping University

Examination date

2019-03-23

Room (5) G32(35) G34(6) TER3(28) TER4(104) TERE(4)
Time 14-18

Edu. code TDDB68

Module TEN1

Edu. code name
Module name

Concurrent Programming and Operating Systems
(Processprogrammering och operativsystem)
Examination (Tentamen)

Department IDA
Number of questions in
i 6
the examination
Teacher
responsible/contact Mikael Asplund

person during the exam
time

Contact number during
the exam time

0700 895 827

Visit to the examination
room approximately

15-16

Name and contact details
to the course

Veronica Kindeland Gunnarsson
013-28 56 34

administrator o
(name + phone nr + mail) adm-gu@ida.liu.se

. . Engelsk ordbok / english dictionary,
Equipment permitted Minirdknare / pocket calculator
Other important
information

Number of exams in the
bag

Information page for written
examinations at Linkoping University

Examination date

2019-03-23

Room (5) G32(35) G34(6) TER3(28) TER4(104) TERE(4)
Time 14-18

Edu. code TDDB68

Module TEN1

Edu. code name
Module name

Concurrent Programming and Operating Systems
(Processprogrammering och operativsystem)
Examination (Tentamen)

Department DA
Number of questions in
o 6
the examination
Teacher
responsible/contact Mikael Asplund

person during the exam
time

Contact number during
the exam time

0700 895 827

Visit to the examination
room approximately

15-16

Name and contact details
to the course
administrator

(name + phone nr + mail)

‘Veronica Kindeland Gunnarsson
013-28 56 34
adm-gu@ida.liu.se

Equipment permitted

Engelsk ordbok / english dictionary,
Miniréknare / pocket calculator

Other important
information

Number of exams in the
bag

Information page for written
examinations at Linkoping University

Examination date

2019-03-23

Room (5) G32(35) G34(6) TER3(28) TER4(104) TERE(4)
Time 14-18

Edu. code TDDB68

Module TEN1

Edu. code name
Module name

Concurrent Programming and Operating Systems
(Processprogrammering och operativsystem)
Examination (Tentamen)

Department IDA
Number of questions in
o e 6
the examination
Teacher
responsible/contact Mikael Asplund

person during the exam
time

Contact nomber during
the exam time

0700 895 827

Visit to the examination
room approximately

15-16

Name and contact details
to the course
administrator

(name + phone nr + mail)

Veronica Kindeland Gunnarsson
013-28 56 34
adm-gu@ida.liu.se

Equipment permitted

Engelsk ordbok / english dictionary,
Minirdknare / pocket calculator

Other important
information

Number of exams in the
bag

Information page for written
examinations at Linképing University

Examination date

2019-03-23

Room (5) G32(35) G34(6) TER3(28) TER4(104) TERE(4)
Time 14-18

Edu. code TDDB68

Module TEN1

Edu. code name

Concurrent Programming and Operating Systems
(Processprogrammering och operativsystem)

Module name oo
Examination (Tentamen)

Department IDA
Number of questions in

o o 6
the examination
Teacher
responsible/contact Mikael Asplund

person during the exam
time

Contact number during
the exam time

0700 895 827

Visit to the examination
room approximately

15-16

Name and contact details
to the course
administrator

(name + phone nr + mail)

Veronica Kindeland Gunnarsson
013-28 56 34
adm-gu@ida.liu.se

Equipment permitted

Engelsk ordbok / english dictionary,
Miniriknare / pocket calculator

Other important
information

Number of exams in the

bag

TENTAMEN / EXAM

TDDB68

Processprogrammering och operativsystem /
Concurrent programming and operating systems

2019-03-23

Examiner: Mikael Asplund (0700895827)

Hjilpmedel / Admitted material:

— Engelsk ordbok / Dictionary from English to your native language;
— Miniréiknare / Pocket calculator

General instructions

e This exam has 6 assignments and 9 pages, including this one.
Read all assignments carefully and completely before you begin.

¢ Please use a new sheet of paper for each assignment, because they will be corrected by different
persons,
Sort the pages by assignments and number them consecutively.

e You may answer in either English or Swedish. English is preferred because not all correcting
assistants understand Swedish.

e Write clearly. Unreadable text will be ignored.

e Be precise in your statements. Unprecise formulations may lead to a reduction of points.
o Motivate clearly all statements and reasoning.

¢ Explain calculations and solution procedures.

e The assignments are not ordered according to difficulty.

o The exam is designed for 40 points. You may thus plan about 5 minutes per point.

e In order to improve this and other courses on concurrency, we will anonymously record the fre-
quency of different types of answers to exercise 2 while correcting the exam.

o Preliminary grading thresholds:

- 3: atleast 20p
— 4: atleast 27p
— 5: atleast 34p

Good luck!

1. Multiple choice quesions (10p)
Below are 10 multiple choice questions. Please answer them by removing the last page of
the exam, fill the appropriate boxes, and hand it in together with the rest of your answers.
Please note that there might be more than one correct option. Each question below can give
0 or 1 point(s), and to get 1 point you must have identified exactly the right set of choices.

(a) Which of the following information would typically be stored in the Process Control (1p)
Block (PCB) for a process?
A) The process state
B) The process file
C) The program counter
D) The process ID

(b) Which of the following memory management tasks can be performed by the MMU: (1p)

A) Memory protection
B) Page table lookup
C) Page replacement
D) TLB lookup

(c) How many times will the following program print out “PID: 0”? (1p)

1 #include <stdio.h>

» #include <sys/types.h>

s #include <unistd.h>

4

s int main() {

s pid_t pid = fork();

7 printf ("PID: %d\n”, pid);
¢ pid = fork ();

9 printf ("PID: %d\n”, pid);
10 return O;

A) 1
B) 2
C) 3
D) 4

(d) Which of the following are classical scheduling algorithms (as described in the course (1p)
literature):
A) Shortest-job first scheduling
B) Burst-first scheduling
C) Round-robin scheduling
D) Priority scheduling
(e) Which of the following can be said to constitute vulnerabilities (1p)

A) Lack of input validation in a program
B) An email with a virus attached
C) The Android operating system
D) Clear-text storage of passwords
(f) Given a virtual memory system with 4 page frames, how many page faults occur (1p)

with the Least-Recently Used replacement strategy when pages are accessed in the
following order:

2,3,1,4,5,1,3,2,2,3, 1,5, 4.
A) 7
B) 9
O 11
D) 13
(g) Which of the following properties are true for semaphores? (1p)

A) The wait and signal operations are atomic.

B) They guarantee freedom from deadlock.

C) They can only be implemented on a system with special hardware.
D) They can be used to solve the critical section problem.

(h) Which of the following allocation methods for blocks on a disk can guarantee access (1p)
to the middle of a file using at most two disk operations (not considering potential
cache functionality)? You can assume that the directory information is already loaded
in memory.

A) Contiguous allocation

B) Linked allocation

C) Indexed allocation

D) Multi-level indexed allocation

(i) Which of the following are possible states for a system process (as described in the (1p)
course literature):
A) Waiting
B) Ready
C) Forking
D) Controlling

(j) Which of the following are security attributes?
A) Integrity
B) Authentication
C) Protection
D) Availability

2. Synchronization (11p)
As a teacher, you are constantly on the hunt for good ideas for exam exercises. The main
problem, however, is that it is easy to forget the good ideas before they are actually used to
produce a good question. To solve this problem, one teacher implemented a data structure
to keep track of them. The implementation of the data structure is shown in Listing 1 on
page 6. It has the following operations:

e idea_init: Initializes the idea buffer.

o idea_add: Adds an idea (a string) to the buffer. If the buffer is full and the idea
could not be added false should be returned, otherwise t rue should be returned.

e idea_get: Randomly selects and returns an idea from the buffer. The idea is also
removed to ensure it is not used for another exam. If no ideas are present, idea.get
shall wait until a new idea is added with idea_add.

During the exam periods, idea_add and idea_get are used frequently by many teach-
ers. Therefore, it is important that they are usable from multiple threads simultaneously as
far as possible.

(a) Is busy-wait used somewhere in the implementation? If so, where?

(b) Use suitable synchronization primitives from listing 2 on page 7 to eliminate any
occurrences of busy-wait you found.

(c) After using the data structure for a while, some users notice that the same idea has
been used multiple times (i.e. multiple calls to idea_get returned the same idea).
Furthermore, ideas sometimes disappear from the buffer, even though idea_add in-
dicates success by returning t rue.

Explain with an example what could have happened when...

A) ...the same idea was used multiple times.
B) ...the buffer "lost” one or more ideas.

(d) Mark any critical sections present in the functions idea_add and idea-get. Also
note the resource(s) that need protection.

(e) Use suitable synchronization primitives from listing 2 on page 7 to synchronize the
code based on the critical sections you found.

Note: Strive for a solution that allows maximum theoretical parallellism, even though
that solution may perform worse in practice due to synchronization overheads (please
note if you think this is the case).

Note: Points may be deducted for excessive locking

(Ip)

(1p)
(2p)

(2p)

(2p)

(4p)

3. Deadlocks (6p)
(a) Explain the principle of deadlock avoidance, including the concept of safe states.

(b) Consider the following resource allocation problem in a system with 3 resources R1-
R3), and 4 processes (P1-P4). The table indicates the currently allocated resources
and in parenthesis the maximum possible demand.

Rl | R2 | R3

PLI1()|0B)|1()

P2|0@2)|0M|1#)

P3|11(1)]0C)]|1(1)

P4|0(1)|0@3)|01)

The currently available resources are: [0, 3, 5]. Use Banker’s algorithm to determine

if the request [0, 1, 0] from Process P4 should be granted.

4. Processes and scheduling (3p)

(a) Given a single-CPU system and the following set of processes with arrival times (in
milliseconds), expected maximum execution time (ms), and priority (1 is lowest, 5 is

highest priority).
Process Arrival time Execution time Priority (as applicable)
Py 0 3 1
P, 1 2 3
Py 2 5 2
Py 4 1 4
Py 6 3 5

For each of the following scheduling algorithms, create a Gantt chart (time bar di-
agram, starting at ¢ = 0) that shows when the processes will execute on the CPU.
Where applicable, the time quantum will be 2 ms. Assume that a task will be eligible
for scheduling immediately on arrival. If you need to make further assumptions, state
them carefully and explain your solution.

(1) Round-robin;
(ii) Shortest Job First with preemption;
(iii) Priority Scheduling without preemption.

5. Memory management (6p)

(a) Compare paging with segmentation with respect to fragmentation and how much
memory the address translation structures require to convert virtual addresses to phys-
ical addresses.

(b) Explain how the possibility of sharing memory pages among multiple processes can
help to speed up the start-up of a child process at a fork system call.
6. File systems (4p)

(a) What is/are the main (technical) purpose(s) of opening a file? What kernel data struc-
tures does the open () system call manipulate and how, and what does it return?

(b) Consider afile hello.txt whichis owned by the (non-administrator) user Mallory.
In a normal system, Mallory would not be able to edit the indode of hello. txt, but
the system which she is using has a weakness that allows her to edit the inode. Using

5

(2p)
(4p)

(3p)

(4p)

(2p)

(Z2p)

(2p)

terminology from the security domain, what is such a weakness called, and what harm
can be done by Mallory being able to modify the inode contents?

 #define BUFFER_SIZE 32

”

3 struct idea_buffer {

4 // All ideas in the buffer. Empty elements are set to NULL.
5 const char xideas [BUFFER_SIZE];

6 }3

7

s // Initialize the buffer.

o void idea_init(struct idea_buffer xbuffer) {

w for (int i = 0; i < BUFFER.SIZE; i++)

1 buffer —ideas[i] = NULL;

v}

s // Add a new idea to an empty location in the buffer. Returns
w // ’false’ if the buffer is full.

s bool idea_add (struct idea_buffer xbuffer, const char xidea) {
6 // Find an empty location.

17 int found = BUFFER_SIZE;

18 for (int i = 0; i < BUFFERSSIZE; i++) {

19 if (buffer—>ideas[i] == NULL) {

20 //Empty location found, put an idea in it an return success
21 found = 1i;

2 buffer —>ideas [found] = idea;

23 return frue;

w)

s}

26 // Buffer full
27 return false;

28}

» // Get and remove a random element from the buffer. If no elements
s // are present, the function waits for an element to be added.

» const char xidea_get(struct idea_buffer xbuffer) {

G5 // Find an element. Start from a random index, and look through
1 /] the array until we find a non—empty element.

35 int pos = rand () % BUFFER_SIZE;

w while (buffer—>ideas[pos] == NULL) {

37 pos = (pos + 1) % BUFFER_SIZE;

B}
39 // Remove it.
10 const char sresult = buffer—>ideas[pos];

NULL;

n buffer—>ideas[pos]

3 return result;

Listing 1: Implementation of the idea buffer

Available synchronization primitives

struct semaphore;

void sema_init(struct semaphore *sema, unsigned
void sema_signal(struct semaphore *sema);

void sema_wait(struct semaphore *sema);

struct lock;

void lock_init(struct lock xlock);
void lock_acquire(struct lock xlock);
void lock_release(struct lock xlock);

value) ;

Listing 2: Syncronization primitives

Intentionally empty page.

Multiple choice form for answering question 1. Please put X:s in the appropriate cells:

1a)
1b)
lc)
1d)
le)
11)
1g)
1h)
11)
1))

Optional: if you feel you need to clarify your interpretation of the question you can do so
here. This is not needed if your answer is correct.

1a)
1b)
1¢)
1d)
le)
1)
lg)
1 h)
11)
1j)

