Information page for written
examinations at Linkoping University

Examination date 2016-08-22
Room (1) TER?2
Time 14-18
Course code TDDB68&
Exam code TEN1

Course name
Exam name

Concurrent Programming and Operating Systems
(Processprogrammering och operativsystem)
Examination (Tentamen)

Department

IDA

Number of questions in
the examination

8

Teacher
responsible/contact
person during the exam
time

Christoph Kessler

Contact number during
the exam time

013-282406

Visit to the examination
room approximately

15:30

Name and contact details
to the course
administrator

(name + phone nr + mail)

Elin Brédje, 013-284767, Elin.Brodje@liu.se

Engelsk ordbok / english dictionary,

Equipment permitted o
p P Minirdknare / pocket calculator
No exam review for re-exams. After reporting, exams will be archived in the IDA
Other important student expedition in the E house where they can be inspected on request. Due to
information assistants being on travel/on leave in the coming weeks we expect that the

grading will be ready around 12 september.

Number of exams in the
bag

= =

Linkopings universitet
IDA Department of Computer and Information Sciences
Prof. Dr. Christoph Kessler

TENTAMEN / EXAM

TDDB68

Processprogrammermg och operatlvsystem /
Concurrent programming and operating systems

22 aug 2016, 14:00-18:00, TER2

Jour: Christoph Kessler (070-3666687, 013-282400); visiting ca. 15:30

Hjilpmedel / Admitted material:

— Engelsk ordbok / Dictionary from English to your native language,
— Miniréiknare / Pocket calculator

General instructions

e This exam has 8 assignments and 6 pages, including this one.
Read all assignments carefully and completely before you begin.

e Please use a new sheet of paper for each assignment, because they will be corrected by different
persons.
Sort the pages by assignments and number them consecutively.

e You may answer in either English or Swedish. English is preferred because not all correcting
assistants understand Swedish.

e Write clearly. Unreadable text will be ignored.

e Be precise in your statements. Unprecise formulations may lead to a reduction of points.
e Motivate clearly all statements and reasoning.

e Explain calculations and solution procedures.

e The assignments are not ordered according to difficulty.

e The exam is designed for 40 points. You may thus plan about 5 minutes per point.

e How much to write? No general policy, but as a rule of thumb: Questions for 0.5p can typically
be answered properly in a single line. Correct and concise answers to questions for 1p usually
require a few lines. Code and figures should be commented properly.

e Grading: U, 3, 4, 5. The preliminary threshold for passing is 20 points.

Due to assistants being on travel/on leave in the coming weeks we expect that the grading will be
ready around 12 september.

1. (8 p.) Interrupts, processes and threads

(a)

(b)

()

(d)

(e)

Define the terms process and thread.
In particular, what are the main differences between processes and threads, and
what do they have in common? Be thorough! (2p)

Draw the general life cycle diagram (finite state machine) for a process in a system
with preemptive scheduling, as introduced in the lecture. For each state (node) ex-
plain shortly what it represents. For each possible state transition (arrow) annotate
which event(s) trigger(s) the transition. (2p)

Why do user-level threads (in contrast to kernel-level threads) promote portability
of applications? (1p)

Write a simple Unix-style program (pseudocode using appropriate system calls)
that spawns exactly two (2) child processes, each of which shall write * " Hello
World’’ to the standard output, and that writes ' ' Goodbye’ ’ after the two
child processes have terminated. Explain your code. (2p)

Two main methods for inter-process communication in a computer are shared mem-
ory and message passing. Which of the two methods is likely to have less overhead
if two processes communicate frequently with each other, and why? (1p)

2. (5 p.) CPU Scheduling

Given a single-CPU system and the following set of processes with arrival times (in
milliseconds), expected maximum execution time (ms), and priority (1 is highest, 5 is
lowest priority).

Process Arrival time Execution time Priority (as applicable)

P 0 6 5
P, 2 3 2
Py 4 I 4
4 7 3 3
Ps 9 2 1

For each of the following scheduling algorithms, create a Gantt chart (time bar diagram,
starting at ¢ = 0) that shows when the processes will execute on the CPU. Where appli-
cable, the time quantum will be 2 ms. Assume that a task will be eligible for scheduling
immediately on arrival. If you need to make further assumptions, state them carefully
and explain your solution. (5p)

(i) FIFO;

(ii) Round-robin;

(ii1) Shortest Job First without preemption;
(iv) Priority Scheduling without preemption.

(v) Priority Scheduling with preemption.

3. (6 p.) Synchronization

A barrier synchronization is a function that does not return control to the caller until all
p threads of a multithreaded process have called it.

A possible implementation of the barrier function uses a shared counter variable that
is initialized to O at program start and incremented by each barrier-invoking thread, and
the barrier function returns if counter has reached value p.

We assume here that p is fixed and can be obtained by calling a function get _nthreads (),
that load and store operations perform atomically, and that each thread will only call the
barrier function once.

The following code is given as a starting point:

static volatile int counter = 0; // shared variable

void barrier(void)
{
counter = counter + 1;
while (counter != get_nthreads())
; // busy waiting
return;

(a) Show by an example scenario with p = 2 threads (i.e., some unfortunate interleav-
ing of thread execution over time) that this implementation of barrier may cause
a program calling it (such as the following) to hang. (0.5p)

void main(void)

{
// create p threads in total

barrier();

}

(b) Identify the critical section(s) in this implementation, and use a mutex lock to prop-
erly protect the critical section(s), without introducing a deadlock. Show the result-
ing C code. (1.5p)

(c) Today, many processors offer some type of atomic operation(s). Can you use here
an atomic fefch-and-add operation instead of the mutex lock to guarantee correct
execution? If yes, show how to modify the code above and explain. If not, explain
why. (1.5p)

{continued on next page...)

(d) The counter-based barrier solution as given above can only be used once in a pro-
gram execution. Why?

Suggest a way to generalize the above solution (properly synchronized) so that it
works even if there occur several barrier synchronizations in the same program,
such as in

void main(void)

{
// create p threads

barrier () ;
barrier () ;

}

Explain your solution, and motivate why it works correctly and will not hang. (2.5p)
(Hint: Is a single counter variable sufficient? Two?)

4. (8 p.) Memory management

(a) For a paging system with a page size of N bytes, what is the maximum amount of
internal fragmentation that can occur when allocating memory for a process? (0.5p)

(b) Consider a page-based virtual memory system with a page size of 2'° = 1024 bytes
where virtual memory addresses have 32 bit. If using multi-level paging,

i. determine how many levels of paging are required, and describe the structure
of the virtual addresses (purpose, position and size of its bit fields); (1.5p)
ii. explain (annotated figure) how in this case the physical address is calculated
by multi-level paging from a virtual address; (1p)
iii. When using a TLB to accelerate address calculation, calculate the expected

time for a paged memory access if a physical memory access costs 100ns on
average and a TLB access costs 1ns, and the TLB hit rate is 90%. (1p)

(c) Explain how paging supports sharing of memory between processes. (1p)

(d) LRU is a popular strategy for page replacement in virtual memory. However it
is just a heuristic technique. What is the (theoretical) optimal page replacement
strategy, why is it not applicable in practice, and how does it differ from LRU? (2p)

(e) Why is it useful for a virtual memory system to be able to estimate the current
working set sizes of all executing processes? (1p)

5. (4 p.) Deadlocks

(a) There are four conditions that must hold for a deadlock to become possible. Name
and describe them briefly. (2p)

(b) Most current operating systems do not implement the Banker’s algorithm for dead-
lock avoidance but instead shift this task to the application programmer. Name 2
limitations of the Banker’s algorithm that are the main reason for this. (I1p)

(c) How can the occurrence of a deadlock be detected when only one instance of each
resource type exists in a system? (1p)

6. (4 p.) File systems

(a) Does a soft link to the file exam.pdf still work after the command
mv exam.pdf archive/exam.pdf? Why or why not? (1p)

(b) Can, in principle, the same file be opened by multiple processes?
If yes, explain (draw a commented figure) how the internal data structures for
opened files in the operating system provide this possibility.
If not, explain why it is not possible. (2p)

(c) Why is the management of unused disk space by the file system more complicated
with contiguous file allocation? (1p)

7. (2 p.) OS Structures and Virtualization

(a) What is the main idea of the microkernel approach to OS structuring, what is its
main advantage and what is its main drawback? (2p)

8. (3 p.) Protection and Security

(a) The Heartbleed bug discovered 2014 in OpenSSL was a so-called buffer-overread
vulnerability. What is a buffer-overread vulnerability, and how could an attacker
benefit from exploiting such a vulnerability? (principle only, no details of OpenSSL)
(1p)

Given a segmented memory system, could it be prevented by careful setting of
segment access rights? Explain why or why not. (1p)

(b) How can using virtual machines increase the security of a system? (1p)

Good Iuck!

