
Linköpings universitet
IDA Department of Computer and Information Sciences
Prof. Dr. Christoph Kessler

TENTAMEN / EXAM

TDDB68
Processprogrammering och operativsystem /
Concurrent programming and operating systems

9 june 2015, 14:00–18:00, TER1, TER2

Jour: Christoph Kessler (070-3666687, 013-282406); visiting ca. 16:00

Hjälpmedel / Admitted material:

– Engelsk ordbok / Dictionary from English to your native language;
– Miniräknare / Pocket calculator

General instructions

• This exam has 8 assignments and 6 pages, including this one.
Read all assignments carefully and completely before you begin.

• Please use a new sheet of paper for each assignment, because they will be corrected by different
persons.
Sort the pages by assignments and number them consecutively.

• You may answer in either English or Swedish. English is preferred because not all correcting
assistants understand Swedish.

• Write clearly. Unreadable text will be ignored.

• Be precise in your statements. Unprecise formulations may lead to a reduction of points.

• Motivate clearly all statements and reasoning.

• Explain calculations and solution procedures.

• The assignments are not ordered according to difficulty.

• The exam is designed for 40 points. You may thus plan about 5 minutes per point.

• How much to write? No general policy, but as a rule of thumb: Questions for 0.5p can typically
be answered properly in a single line. Correct and concise answers to questions for 1p usually
require a few lines. Code and figures should be commented properly.

• Grading: U, 3, 4, 5. The preliminary threshold for passing is 20 points.

1

1. (7 p.) Interrupts, processes and threads

(a) Define the terms process and thread.
In particular, what are the main differences between processes and threads, and
what do they have in common? Be thorough! (2p)

(b) Why do user-level threads (in contrast to kernel-level threads) promote portability
of applications? (1p)

(c) Two main methods for inter-process communication in a computer are shared mem-
ory and message passing.
For each of them, give a short explanation of how it works and how the operating
system is involved, i.e., which important system calls are to be used and what they do.
Which of the two methods is likely to have less overhead if two processes commu-
nicate frequently with each other, and why? (2.5p)

(d) How does an operating system prevent a process from monopolizing a processor,
and what hardware support is required for that? (1.5p)

2. (7 p.) CPU Scheduling

(a) Given a single-CPU system and the following set of processes with arrival times (in
milliseconds), expected maximum execution time (ms), and priority (1 is highest, 5
is lowest priority).
Process Arrival time Execution time Priority (as applicable)
P1 0 6 5
P2 2 3 4
P3 4 2 2
P4 7 3 3
P5 9 2 1

For each of the following scheduling algorithms, create a Gantt chart (time bar di-
agram, starting at t = 0) that shows when the processes will execute on the CPU.
Where applicable, the time quantum will be 4 ms. Assume that a task will be eligi-
ble for scheduling immediately on arrival. If you need to make further assumptions,
state them carefully and explain your solution. (5p)
(i) FIFO;
(ii) Round-robin;
(iii) Shortest Job First without preemption;
(iv) Priority Scheduling without preemption.
(v) Priority Scheduling with preemption.

(b) Strictly priority-based schedulers introduce the problem of process starvation. What
does this mean? Shortly describe one technique (there exist several ones) that can
reduce or completely remove this starvation problem. How does this technique
interfere with the priority mechanism? (2p)

2

3. (6 p.) Synchronization
Train collision avoidance control
Railway systems need a safety mechanism for preventing train collisions. A common
solution consists in partitioning the railway network into N junction1-free rail segments
each of a certain fixed length (usually, a few kilometers, at least as long as the longest
train plus the maximum distance to brake a train down to halt if the next rail segment is
not free). See the figure (left) below for a simple example.

Left: A simple railway sys-
tem with N = 6 segments
s1,...,s6, two junctions, and
currently two trains circu-
lating in clockwise direc-
tion. — Right: The corre-
sponding segment graph.

Assume here for simplicity that:

• all segments are unidirectional;

• between any two junctions there is at least one full-length segment;

• at junctions, the adjacent segments have 2 predecessors or successors respectively.

Hence, the railway system can be modeled as a directed graph with the segments as
nodes, where edges connect segments to their successor segments, see the figure (right).

At any time there shall be at most one train within a segment, and a train can only proceed
to its next segment if it is free. Trains may proceed at arbitrary speed and remain within
their current segment for an arbitrary amount of time, e.g. when halting in a train station.

The central railway control server stores the graph of segments in (shared) memory and
uses (e.g.) a boolean flag in the node data structure to indicate if the segment is cur-
rently free or occupied. Before entering its next railway segment, a train asks the control
server for permission, by having a server thread call

void request_entry_to_segment(struct node *segm)
{

while (segm->flag == 1) // 1 means OCCUPIED
;

segm->flag = 1;
}

If the desired segment segm is marked free, the control server marks it as occupied and
grants access to the requesting train by returning from the call. If the segment is occupied,
the call blocks and thus the train must halt in its current segment and wait until the call
eventually returns to signalize that the next segment is now ready for entering.

Once the train proceeded to its next segment and has left the previous one, it signalizes
this to the control computer by having a server thread call

1junction = växel in Swedish, a point where a railway track branches into two, or two tracks join into one.

3

void indicate_exit_from_segment(struct node *segm)
{

segm->flag = 0; // FREE
}

on the previous segment segm.

In order to handle multiple incoming requests from multiple trains on a large railway
network concurrently, the control computer uses a multithreaded program. It is your job
to make the control program race-free (and, if possible, also deadlock-free).

(a) Give a simple, concrete example scenario to show that, without any further synchro-
nization, race conditions are possible that may lead to a train collision (a segment
being double-booked). (1p)

(b) Which hardware primitive, if available on the control server, could be suitably used
here for synchronization to avoid race conditions, and why? Show the resulting
pseudocode for request entry to segment and indicate exit from segment.
(2p)

(c) Which software construct could be used for synchronization to avoid busy wait-
ing? Show the resulting pseudocode for request entry to segment and
indicate exit from segment. (2p)

(d) For either (b) or (c), could a deadlock occur with your solution? If yes, give an
example scenario. If not, explain why it is not possible. (1p)

4. (8 p.) Memory management

(a) Consider a page-based virtual memory system with a page size of 211 = 2048 bytes
where virtual memory addresses have 32 bit. If using multi-level paging,

i. determine how many levels of paging are required, and describe the structure
of the virtual addresses (purpose, position and size of its bit fields); (1.5p)

ii. explain (annotated figure) how in this case the physical address is calculated
by multi-level paging from a virtual address; (1p)

iii. show how a TLB can be used to accelerate address calculation. (1p)
iv. calculate the expected time for a paged memory access if a physical memory

access costs 100ns on average and a TLB access costs 1ns, and the TLB hit
rate is 90%. (0.5p)

(b) Explain how the possibility of sharing memory pages among multiple processes can
help to speed up the start-up of a child process at a fork system call. (1.5p)

(c) How can segmentation and paging be combined? (1p)
(d) Given a virtual memory system with 4 page frames, how many page faults occur

with the Least-Recently Used replacement strategy when pages are accessed in the
following order:
1, 2, 3, 4, 5, 1, 3, 4, 2, 3, 1, 5, 4.
(Justify your answer. Just guessing the right number is not acceptable.) (1.5p)

(e) How can the program design affect the performance on a system with virtual mem-
ory? (1.5p)

4

5. (3 p.) Deadlocks

(a) Consider the following pseudocode:

mutex_lock_t l1, l2, l3;

void T1(void)
{
mutex_lock(&l1);
mutex_lock(&l2);
...
mutex_release(&l2);
mutex_release(&l1);
mutex_lock(&l3);
...
mutex_release(&l3);

}

void T2(void)
{
mutex_lock(&l2);
mutex_lock(&l3);
...
mutex_release(&l3);
mutex_release(&l2);

}

void T3(void)
{
mutex_lock(&l3);
mutex_lock(&l1);
...
mutex_release(&l1);
mutex_release(&l3);

}

void main (void)
{
initialize mutex locks l1, l2, l3;
create 3 threads that execute T1(), T2(), T3() respectively

}

There are 3 threads that concurrently execute the functions T1, T2 and T3 respec-
tively, which need to acquire and release mutual exclusion locks in order to perform
their work (...).
Is this program deadlock-free?
If yes, give a formal argument why.
If not, give a formal argument why, and a counterexample. (2 p)

(b) Most current operating systems do not implement the Banker’s algorithm for dead-
lock avoidance but instead shift this task to the application programmer. Name 2

5

limitations of the Banker’s algorithm that are the main reason for this. (1p)

6. (5 p.) File systems

(a) Does a soft link to the file exam.pdf still work after the command
mv exam.pdf archive/exam.pdf? Why or why not? (1p)

(b) What information is usually contained in a file control block (FCB)? (At least 4
different items are expected) (1p)

(c) Where is the FCB (file control block) contents stored after a file has been opened?
(0.5p)

(d) What is the basic idea and motivation of the Unix inode structure? (1.5p)

(e) Sometimes it may become necessary to run a file system consistency check. What
does ”inconsistency” of a file system mean, and what could possibly have caused
it? (1p)

7. (2 p.) OS Structures and Virtualization

(a) Give one of the main disadvantages of strict layering (with more than just very few
layers) in operating systems. (0.5p)

(b) What does a hypervisor (also known as virtual machine monitor, VM implementa-
tion) do?
Illustrate your answer with a commented figure that shows where the hypervisor
is positioned in the system software stack and with which other system entities it
interacts. (1.5p)

8. (2 p.) Protection and Security

(a) The Heartbleed bug discovered 2014 in OpenSSL was a so-called buffer-overread
vulnerability. What is a buffer-overread vulnerability, and how could an attacker
benefit from exploiting such a vulnerability? (principle only, no details of OpenSSL)
(1p)
Given a segmented memory system, could it be prevented by careful setting of
segment access rights? Explain why or why not. (1p)

Good luck!

6

