Saiviy Forsattsblad till skriftlig

tentamen vid Linkopings Universitet

(fylls i av ansvarig)

Datum for tentamen 26 aug 2013

Sal TERI

Tid 08-12

Kurskod TDDB68

Provkod TENI1

Kursnamn/benamning Processprogrammering och
operativsystem

Institution IDA

Antal uppgifter som 8

ingar i tentamen

Antal sidor pa tentamen 6

(inkl. forsattsbladet)

Jour Christoph Kessler,

0703-666687, 013-282406

Besoker salen ca kl.

09:30

Examinator/kursansvarig

Christoph Kessler, IDA

Kursadministrator
(namn + tfnnr + mailadress)

Carita Lilja, 013-281463,
carita.lilja@liu.se

Tillatna hjilpmedel

Engelsk ordbok, minirdknare

Ovrigt

(exempel nir resultat kan ses pa
webben, betygsgrinser, visning,
ovriga salar tentan gir i m.m.)

Se forstasidan / see first page

Link&pings universitet
IDA Department of Computer and Information Sciences
Prof. Dr. Christoph Kessler

TENTAMEN / EXAM

TDDB68

Processprogrammerlng och operatlvsystem /
Concurrent programming and operating systems

26 aug 2013, 08:00-12:00 TERI1

Jour: Christoph Kessler (070-3666687, 013-282406), visiting ca. 09:30

Hjalpmedel / Admitied material:

— Engelsk ordbok / Dictionary from English to your native language;
— Minirdknare / Pocket calculator

General instructions

e This exam has 8 assignments and 5 pages, including this one.
Read all assignments carefully and completely before you begin.

e It is recommended that you use a new sheet of paper for each assignment, because they will be
corrected by different persons.
Sort the pages by assignment, number them consecutively and mark each one on top with your
exam ID and the course code.

e You may answer in either English or Swedish. English is preferred because not all correcting
assistants understand Swedish.

e Write clearly. Unreadable text will be ignored.

e Be precise in your statements. Unprecise formulations may lead to a reduction of points.
e Motivate clearly all statements and reasoning.

e Explain calculations and solution procedures.

e The assignments are nor ordered according to difficulty.

e The exam is designed for 40 points. You may thus plan about 5 minutes per point.

e Grading: U, 3, 4, 5. The preliminary threshold for passing is 20 points.

1. (6 p.) Interrupts, processes and threads

(a) Define the terms process and thread.
In particular, what are the main differences between processes and threads, and
what do they have in common? Be thorough! (2p)

(b) What is a thread pool?
How can using a thread pool improve performance? (1.5p)

(c) Two main methods for inter-process communication in a computer are shared mem-
ory and message passing.
For each of them, give a short explanation of how it works and how the operating

system is involved, i.e., which important system calls are to be used and what they
do.

Which of the two methods is likely to have less overhead if two processes commu-
nicate frequently with each other, and why? (2.5p)

2. (6 p.) CPU Scheduling

(a) Given a single-CPU system and the following set of processes with arrival times (in
milliseconds), expected maximum execution time (ms), and priority (1 is highest, 5
is lowest priority).

Process Arrival time Execution time Priority (as applicable)

Py 0 7 3
P 1 3 3
Py J 1 4
Ly 7 2 2
P 11 2 1

For each of the following scheduling algorithms, create a Gantt chart (time bar di-
agram, starting at ¢ = 0) that shows when the processes will execute on the CPU.
Where applicable, the time quantum will be 3 ms. Assume that a task will be eligi-
ble for scheduling immediately on arrival. If you need to make further assumptions,
state them carefully and explain your solution. (5p)

(1) FIFO;
(i1) Round-robin;
(ii1) Shortest Job First without preemption;
(iv) Priority Scheduling without preemption.
(v) Priority Scheduling with preemption.
(b) There exist several strategies for CPU scheduling on a multiprocessor system. One

of them is affinity-based scheduling. How does it work (basic idea, no details) and
what is the motivation for it? (1p)

3. (6 p.) Synchronization

Servers can be designed to limit the number of open connections. For example, a server
may wish to have only N socket connections at any point in time. As soon as N connec-
tions are made, the server will not accept another incoming connection until an existing
connection is released.

The current number of available connections could be kept track of by a counter in shared
memory, initialized to N:

shared int N_available_connects = N;

Basically, each incoming connection request could create a new thread that would execute
the following function:

connection *void handle_connection_request (void)

{

while (N_available_connects == 0)
; // wait...
N_available_connects = N_available_connects - 1;

return make_new_connection () ;

and upon closing a connection, the thread would call the following function:

void close_connection(connection *xc)

{
release_connection(c);
N_available connects = N_available_connects + 1;

(a) Show by an example scenario that, without using additional synchronization, the
above code can lead to a race condition, resulting in undesired behavior. (0.5p)

(b) Give a properly synchronized solution (C/pseudocode), using either testd&set or
atomic_swap instructions.
Explain why your solution guarantees absence of race conditions.
Explain whether your solution is fair or not, i.e., whether it guarantees that no con-
nection request could be postponed indefinitely. (3p)

(c) Suggest (pseudocode/English) how to extend your solution to avoid busy waiting in
the case where no connections are available. (1p)

(d) Give a solution using a monitor abstraction. Use C or pseudocode notation with
appropriate keywords to identify the monitor components, and explain your code.

(1.5p)
4. (2 p.) More synchronization

(a) Explain how mutual exclusion synchronization can interfere with priority based
scheduling. (2p)

5. (5 p.) Deadlocks

(a) There are four conditions that must hold for a deadlock to become possible. Name
and describe them briefly. (2p)

(b) You are given a system with 4 types of resources, A, B, C and D. There are 4
instances of A, 5 instances of B, 1 instance of C and 7 instances of D. Currently,
5 processes F...Ps are running, and for each process, the resources currently held
and its total maximum resource need (including the already held ones) for each type
are given as follows:
Process Already held Maximum total need
ABCD ABCD

P 0101 0204
Py 0000 4305
P; 1210 2215
Py 1002 2204
P 1002 2014

Le., currently, process P; holds already one B and one D out of the 2 Bs and 4 Ds
that it eventually may need in the worst case, etc. One A is currently still available,
elc.

(i) Show that the system is currently in a safe state (calculation). (1.5p)

(i1) In the situation given above, process P, now asks for 1 instance of [, in addition
to the B and D that it already has. Is it safe to grant the request? Why or why not?
(calculation) (1.5p)

6. (8 p.) Memory management

(a) Consider a page-based virtual memory system with a page size of 1024 bytes where
virtual memory addresses have 32 bit size. If using multi-level paging,

i. determine how many levels of paging are required, and describe the structure
of the virtual addresses (purpose, position and size of its bit fields): (1p)
ii. explain (annotated figure) how in this case the physical address is calculated
by multi-level paging from a virtual address; (1p)
iii. show how a TLB can be used to accelerate address calculation; (1p)
iv. calculate the expected time for a paged memory access if a physical memory

access costs 100ns on average and a TLB access costs 5ns, and the TLB hit
rate is 90%. (0.5p)

(b) How can segmentation and paging be combined? (1p)

(¢) Characterize an important property of pages that are particularly suitable to choose
as a victim when freeing a used frame in order to reduce page replacement overhead.
Explain why. What kind of data structure could help with this choice? (1.5p)

(d) What is thrashing in a virtual memory system? How does it occur? And what can
be done about it? (2p)

7. (5 p.) File systems

(a) What is/are the main (technical) purpose(s) of opening a file?
What kernel data structures does the open () system call manipulate and how, and
what does it return? (2p)

(b) Is the file allocation method FAT (file allocation table) susceptible (prone) to exter-
nal fragmentation? Give a short explanation. (1p)

(c) Name and describe one disk scheduling algorithm of your choice (but not FIFO/FCFS,
which is a trivial one), and describe its (expected) effect on disk throughput and disk
access latency compared to FIFO/FCFES. (2p)

8. (2 p.) Protection and Security

(a) How does memory segmentation support protection? (1p)

(b) How can using virtual machines increase the security of a system? (1p)

Good luck!

