o Forsattsblad till skriftlig

tentamen vid Linkopings Universitet

(fylls i av ansvarig)

Datum for tentamen 4 jun 2013

Sal TERI

Tid 14-18

Kurskod TDDB68

Provkod TENI

Kursnamn/benimning Processprogrammering och
operativsystem

Institution IDA

Antal uppgifter som 9

ingir i tentamen

Antal sidor pa tentamen 7

(inkl. forsattsbladet)

Jour Christoph Kessler,

013-282406, 0703-666687

Besoker salen ca kl.

16:00

Examinator/kursansvarig

Christoph Kessler, IDA

Kursadministrator
(namn + tfnnr + mailadress)

Carita Lilja, 013-281463,
carita.lilja@liu.se

Tillatna hjdlpmedel

Engelsk ordbok, minirdknare

Ovrigt

(exempel niir resultat kan ses pé
webben, betygsgrinser, visning,
dvriga salar tentan gir i m.m.)




Link6pings universitet
IDA Department of Computer and Information Sciences
Prof. Dr. Christoph Kessler

TENTAMEN / EXAM

TDDB68

Processprogrammering och operativsystem /
Concurrent programming and operating systems

4 jun 2013, 14:00-18:00

Jour: Christoph Kessler (070-3666687, 013-282406), visiting ca. 16:00

Hjalpmedel / Admitted material:

— Engelsk ordbok / Dictionary from English to your native language;
~ Minirdknare / Pocket calculator

General instructions

e This exam has 9 assignments and 6 pages, including this one.
Read all assignments carefully and completely before you begin.

e It is recommended that you use a new sheet of paper for each assignment, because they will be
corrected by different persons.

Sort the pages by assignment, number them consecutively and mark each one on top with your
exam ID and the course code.

¢ You may answer in either English or Swedish. English is preferred because not all correcting
assistants understand Swedish.

e Write clearly. Unreadable text will be ignored.

e Be precise in your statements. Unprecise formulations may lead to a reduction of points.
e Motivate clearly all statements and reasoning.

e Explain calculations and solution procedures.

e The assignments are not ordered according to difficulty.

e The exam is designed for 40 points. You may thus plan about 5 minutes per point.

e Grading: U, 3, 4, 5. The preliminary threshold for passing is 20 points.



1. (7 p.) Interrupts, processes and threads

(a) Define the terms process and thread.
In particular, what are the main differences between processes and threads, and
what do they have in common? Be thorough! (2p)

(b) Why do user-level threads (in contrast to kernel-level threads) promote portability
of applications? (1p)

(c) We discussed different thread models with different relations (mappings) between
user and kernel threads. Describe one of these models that is appropriate for use on
a multiprocessor architecture, and explain why. (1.5p)

(d) Write a simple Unix-style program (pseudocode using appropriate system calls)
that spawns exactly two (2) child processes, each of which shall write * * Hello
World’ ' tothe standard output. (2.5p)

2. (6 p.) CPU Scheduling

(a) Given a single-CPU system and the following set of processes with arrival times (in
milliseconds), expected maximum execution time (ms), and priority (1 is highest, 5
is lowest priority).

Process Arrival time Execution time Priority (as applicable)

f2) 0 7 5
P, 1 5 3
P 4 | 4
P, 7 3 2
P; 1 2 1

For each of the following scheduling algorithms, create a Gantt chart (time bar di-
agram, starting at ¢ = () that shows when the processes will execute on the CPU.
Where applicable, the time quantum will be 2 ms. Assume that a task will be eligi-
ble for scheduling immediately on arrival. If you need to make further assumptions,
state them carefully and explain your solution. (5p)

(1) FIECy;
(i1) Round-robin;
(ii1) Shortest Job First without preemption;
(iv) Priority Scheduling without preemption.
(v) Priority Scheduling with preemption.

(b) What is the purpose of

(i) the long-term / medium-term scheduler and
(i1) the short-term scheduler in an operating system? (1p)



3. (6 p.) Synchronization

A barrier synchronization is a function that does not return control to the caller until all
p threads of a multithreaded process have called it.

A possible implementation of the barrier function uses a shared counter variable that
is initialized to O at program start and incremented by each barrier-invoking thread, and
the barrier function returns if counter has reached value P.

We assume that p can be obtained by calling a function get _nthreads (), that load
and store operations perform atomically, and that each thread will only call the barrier
function once.

The following code is given as a starting point:

static volatile int counter = 0; // shared variable

void barrier( void )

{

counter++;

while (counter != get_nthreads())
i // busy waiting

EetuEn:

(a) Show by an example scenario with p = 2 threads (i.e., some unfortunate interleav-
ing of thread execution over time) that this implementation of barrier may cause
a program calling it (such as the following) to hang. (0.5p)

void main( void )
{
// create p threads

barrier();
}
(b) Identify the critical section(s) in this implementation, and use a mutex lock to protect

the critical section(s), without introducing a deadlock. Show the resulting C code.
(1.5p)

(c) Can you guarantee correct execution without using mutex locks, by using atomic
Jetch-and-add instead? If yes, show how to modify the code above and explain. If
not, explain why. (1.5p)

(d) The counter-based barrier solution as given above can only be used once in a pro-
gram execution (why?). Suggest a way to generalize the above solution (properly
synchronized) so that it works even if there occur several barrier synchronizations
in the same program, such as in



void main( void )
{
// create p threads

barrier ();
barrier();

}

Explain your solution, and motivate why it works correctly and will not hang. (2.5p)
(Hint: Is a single counter variable sufficient? Two? A correct solution that works

for an arbitrary number of barriers using the minimum number of counters gets a
+1p bonus.)

4. (2 p.) More synchronization

(a) BExplain how mutual exclusion synchronization can interfere with priority based
scheduling. (2p)

5. (3 p.) Deadlocks
(a) Consider the following pseudocode:

mutex_lock_t 11, 12, 13;

void T1( void )

{

mutex_lock ( &11 );
mutex_lock ( &12 );

mutex_release( &12 );
mutex_release( &11 );
mutex_lock( &13 );

mutex_release( &13 );

}

void T2 ( void )

{

mutex_lock ( &12 );
mutex_lock( &13 );

mutex_release( &13 );
mutex_release( &12 );

}

void T3( void )
{
mutex_lock ( &13 );



mutex_lock ( &11 };

mutex_release ( &l1l1 );
mutex_release( &13 );

}

void main ( void )

{
create 3 threads that execute TLCY T2() 4 T3() respectively

}

There are 3 threads that concurrently execute the functions T1, T2 and T3 respec-
tively, which need to acquire and release mutual exclusion locks in order to perform
their work (...).

Is this program deadlock-free?
If yes, give a formal argument why.
If not, give a formal argument why, and a counterexample. (2 p)
(b) Most current operating systems do not implement the Banker’s algorithm for dead-

lock avoidance but instead shift this task to the application programmer. Name 2
limitations of the Banker’s algorithm that are the main reason for this. (1p)

6. (8 p.) Memory management

(a) Consider a page-based virtual memory system with a page size of 256 bytes where
virtual memory addresses have 32 bit size. If using multi-level paging,

1. determine how many levels of paging are required, and describe the structure
of the virtual addresses (purpose, position and size of its bit fields); (1p)
il. explain (annotated figure) how in this case the physical address is calculated
by multi-level paging from a virtual address: (1p)
iii. show how a TLB can be used to accelerate address calculation; (1p)
iv. calculate the expected time for a paged memory access if a physical memory

access costs 100ns on average and a TLB access costs Sns, and the TLB hit
rate is 80%. (0.5p)

(b) Explain how segmented virtual memory supports sharing of memory segments be-
tween processes. (1p)

(¢) Given a virtual memory system with 4 page frames, how many page faults occur
with the Least-Recently Used replacement strategy when pages are accessed in the
following order:
1,2,3,4,5,1,3,4,2,3,1, 5, 4.

(Justify your answer. Just guessing the ri ght number is not acceptable.) (1.5p)

(d) What is thrashing in a virtual memory system? How does it occur? And what can
be done about it? (2p)



7. (3.5 p.) File systems

(a) What information is usually contained in a file control block (FCB)? (At least 4
different items are expected) (1p)

(b) Where is the FCB contents stored after a file has been opened? (0.5p)

(c) Is the file allocation method indexed allocation susceptible (prone) to external frag-
mentation? Give a short explanation. (1p)

(d) What is the purpose of disk scheduling? (1p)

8. (1.5 p.) OS Structures and Virtualization

What does a hypervisor (also known as virtual machine monitor, VM implementation)
do?

Ilustrate your answer with a commented figure that shows where the hypervisor is po-
sitioned in the system software stack and with which other system entities it interacts.

(1.5p)

9. (3 p.) Protection and Security

(a) Name two different (software or hardware) measures to prevent buffer-overflow vul-
nerabilities. Explain briefly (1 line each) how they work. (1p)

(b) How does memory segmentation support protection? (1p)

(c) Why can, in general, the microkernel approach increase the security of a system
compared to a traditional OS structure? (1p)

Good luck!



