Forsattsblad till skriftlig

tentamen vid Linkopings Universitet

(fylls i av ansvarig)

Datum for tentamen 123 oct 2012

Sal | | TER1

Tid 14-18

Kurskod TDDB68

Provkod TENI1

Kursnamn/benimning Processprogrammering och
| operativsystem

JInstitution IDA

Antal uppgifter som 8

ingar i tentamen ‘

Antal sidor pé tentamen 7

(inkl. forsittsbladet)

Jour Christoph Kessler, 0703-666687

Besoker salen ca kl.

16:00

Examinator/kursansvarig

Christoph Kessler, IDA

Kursadministrator
(namn + tfnnr + mailadress)

Gunilla Mellheden, 013-282297 e.
0705-979044, gunme@ida.liu.se

Tilldtna hjalpmedel

Engelsk ordbok, minirdknare

Ovrigt
(exempel niir resultat kan ses pa

webben, betygsgrinser, visning,
ovriga salar tentan gér i m.m.)

Linkopings universitet
IDA Department of Computer and Information Sciences
Prof. Dr. Christoph Kessler

TENTAMEN / EXAM

TDDB63

Processprogrammering och operativsystem /
Concurrent programming and operating systems

23 aug 2012, 14:00-18:00 TER1

Jour: Chustoph Kessler (070-3666687, 013-282406), visiting ca. 16:00

Hjalpmedel / Admitted material:

— Engelsk ordbok / Dictionary from English to your native language;
- Miniriknare / Pocket calculator

General instructions

o This exam has 8 assignments and 6 pages, including this one. '
Read all assignments carefully and completely. before you begin.

o If is recommended that you use a new sheet of paper for each assignment, because they will be
corrected by different persons.
Sort the pages by assignment, number them consecutively and mark each one on top with your
exam ID and the course code.

e You may answer in either English or Swedish. English is preferred because not all correcting
assistants understand Swedish.

s Write clearly. Unreadable text will be ignored.

» Be precise in your statements. Unprecise formulations may lead to a reduction of points.
e Motivate clearly all statements and reasoning.

o Explain calculations and solution procedures.

e The assignments are not ordered according to difficulty.

o The exam is designed for 40 points. You may thus plan about 5 minutes per point.

» Grading: U, 3, 4, 5. The preliminary threshold for passing is 20 points.

Students in international master programs and exchange students will receive ECTS grades. Due
to the aponymization of written exam correction, ECTS grades will be set by one-to-one frans-
Jation from swedish grades (5=A, 4=B, 3=C, U=FX), according to the regulations by LinkOping
university.

1. (5 p.) Interrupts, processes and threads

(2) Define the terms process and thread.
In particular, what are the main differences between processes and threads? Be
thorough! (2p)

(b) What is a process control block (PCB)? What is its purpose? And what data does it
contain (at least 4 relevant items are expected)? (2p)

(c) The system call API (application progranuming interface) is a software abstraction
for invoking OS functionality.
Name one kind of technical details that it abstracts from. (0.5p)
Why is such abstraction important for application programming? (0.5p)

2. (5 p.) CPU Scheduling

Given a single-CPU system and the following set of processes with arrival times (in
milliseconds), expected maximum execution time (ms), and priority (1 is highest, 5 is
lowest priority).

Process Armrival ime Execution time Priority (as applicable)

P 0 5 4
P, 1 7 2
Py 3 2 5
Py 9 3 3
Py 10 1 1

For each of the following scheduling algorithms, create a Gantt chart (time bar diagram,
starting at £ = @) that shows when the processes will execute on the CPU. Where appli-
cable, the time quantumn will be 3 ms. Assume that a task will be eligible for scheduling
immediately on ardval. If you need to make further assumptions, state them carefully
and explain your solution. (5p)

() FIFO;

(i1) Round-robin;

(iii) Shortest Job First without preemption;
(iv) Prority Scheduling withous preemption.
(v) Prority Scheduling with preemption.

3. (7 p.) Synchronization

Cinema seat reservation system

Once upon a time, a small cinema with a single ticket counter used a seat reservation
program for a (for simplification) single movie presentation per day, with the following
(simplified) core data structures and functions:

const int nrows = 8; // Number of rows of seats

conet int seats_per_row = 12; // Number of seats per row

boolean seat booked[nrows][. seats_per Frow 1; // 2D array of seats
// seat_booked[il[3] is 1 iff seat in row i, column j is booked

Initially, all seats are free. This is fixed by the following function, which is executed
before the cinema ticket counter is opened every day:

voild initialize seats ()
{
for {(int i=0; i<nrows; i++)
for (int j=0; Jj<seats_per_row; J++)
seat_booked[i] (4] = 0; // free

Before reserving a seat for a new visitor, the clerk at the ticket counter queries the current
status of free and booked seats (i.e., the contents of seat_booked), which is displayed
graphically (as shown above):

void show_seat booking status ()
{ ‘
for (int i=0; i<nrows; i++)
for {(int j=0; J<seats_pexr_row; J++)
display_status{ i, 3, seat booked[ilijl);
}

After asking the customer for his/her preferences, the clerk chooses and books a seat that
was displayed as free, which is done by the following function:

boolean book_seat { int i, int j)
{
if (i<0 || i»=nrows || j<0 || j>=seats_per_row) {
error_mesgage{"no such seat"); return 0;
}
if (seat_booked[i][j1) {
error_message("seat already booked"); return 0;
}
seat_booked{i][di] = 1;
return 1; // successful - can now print the ticket.

}

As time goes by, the number of visitors grows and the cinema moves {0 a building with
a larger room (= larger values for nrows and seats.per_row). To reduce queneing
at the ticket counter, a second ficket counter is added, and even a web interface for self-
booking is created. All these become additional clients of the seat reservation program,
which now will run on a dual-core (!) server rupning a modern operating system with
preemptive thread scheduling that supports semapbores and mutual exclusion locks. The
revised seat reservation program shall be multithreaded, such that the above data struc-
tures are shared and several book_seat calls may be issued concurrently. Itis your task
to make the seat reservation program thread-safe. -

(a) Identify the critical section(s) in the code above, and suggest a simple, but feasible
synchronization method to protect the program against race conditions. Show the
(pseudo)code of your revised function(s). Explain why your solution is free of race
conditions. (2.5p)

(b) The new server also provides a hardware atomic_swap instruction. Suggest an
alternative protection mechanism that uses atomic.swap, and show the revised
code for function book.seat. (1.5p)

(c) Suggest a protection method that increases concurrency by allowing bookings of
seats in different rows to proceed simmultaneously. (Just the solution idea, no com-
plete code). (1p)

(d) Small groups of persons, e.g. couples, usually prefer to sit next to each other. We
assume that seats can only be reserved one by one using the (properly synchronized)
book_seat routine as above. For example, for booking two adjacent seats in the
same row, simply calling book._seat for the two desired seats in sequence may
Jead to problems — why? (example scenario) (1p).

What would be a suitable programming abstraction (technical term) for implement-
ing an operation that either books 2 adjacent free seats in the same row together or
none at all? (1p)

4. (6 p.) Deadlocks

(a) There are four conditions that must hold for a deadlock to become possible. Name
and describe them briefly. (2p)

(b) What is the differcnce; between deadlock and starvation? (1p)

(¢) You are given a system with 4 types of resources, A, B, C and D. There are 4
instances of A, 5 instances of B, 1 instance of C' and 7 instances of D. Currently,
4 processes P;...P, are running, and for cach process, the resources currently held
and its total maximum resource need (including the already held ones) for each type
are given as follows:
Process Already held Maximum total need
ABCD ABCD

P, 0101 0204
P, 1210 2213
Ps 1002 2203
Py 1002 2013

(i) Show that the system is currently in a safe state (calculation). (1.5p)

(i) In the situation given above, process P, now asks for 1 instance of D. Is it safe
to grant the request? Why or why not? (calculation) (1.5p)

5. (5.5 p.) Memory mapagement

(a) Which kind of fragmentation (external or internal) can océur in contiguous memory
allocation? Explain your answer. (1p)

(b) Explain how segmented virtual memory supports sharing of memory segments be-
tween processes. (1p)

(c) Given a virtmal memory system with 4 page frames, how many page faults occur
with the Least-Recently Used replacement strategy when pages are accessed in the
following order: :

1,2,3,4,5,1,3,4,2,3,1,5,4.
(Justify your answer. Just guessing the right number is not acceptable.) (1.5p)

(d) What is data access locality?
How can it be approximated for a running process?
Why is good data locality an important property of programs that run on a system
with virtual memory?
How can the operating system use this information to improve system performance?

p)

6. (5 p.) File systems

(a) What is the difference between hard links and soft (symbolic) links? (1p)

(b) Is the file allocation method indexed allocation susceptible to external fragmenta-
tion? Give a short explanation. (1p)

(¢) Describe one technique to extend indexed allocation for large files. (1p)

(d) Describe one case where the file system is not an appropriate abstraction for sec-
ondary storage, and explain why. (1p)

(e) What is the purpose of disk scheduling? (1p)
7. (2.5 p.} OS Structures and Virtualization

(2) Define the term layered operating system carefully. (1p)

(b) What does a hypervisor (also known as virtual machine monitor, VM implementa-
tion) do?
[lustrate your answer with a commented figure that shows where the hypervisor
is positioned in the system software stack and with which other system entities it
interacts. {1.5p)

8. (4 p.) Protection and Security

(a) What is an access control list (ACL)? What does it contain, and how is it used? (1p)
(b) How does memory segmentation support protection? (1p)
(¢) Explain the main differences between a computer virus and a worm. (1p)

(d) How can using virtual machines increase the security of a system? (1p)

- Good luck!

