o Forsattsblad till skriftlig

tentamen vid Linképings Universitet

(fylls 1 av ansvarig)

Datum for tentamen 27 aug 2011
Sal TERI1

Tld 14-18
Eﬁirskﬁ)d TDDB68
Provkoed TEN1

Kursnamn/benamning

Processprogrammering och

operativsystem
Institution IDA
Antal uppgifter som 8
ingar i tentamen
Antal sidor pa tentamen 7
(.akl. forsittsbladet)
Jour/Kursansvarig Christoph Kessler
 Telefon under skrivtid 0703-666687
' Besoker salen ca kL. 16:00

Kursadministrator
(namn + tfonr + mailadress)

Gunilla Mellheden, 013-282297 e.
0705-979044, gunme(@ida.liu.se

Tillatna hjalpmedel

Engelsk ordbok, minirdknare

Ovrigt

(exempel nér resultat kan ses pa
webben, betygsgrinser, visning,

dvriga salar tentan gir i m.m.)

Linkopings universitet
IDA Department of Computer and Information Sciences
Prof. Dr. Christoph Kessler

TENTAMEN / EXAM

TDDB68

Processprogrammering och operativsystem /
Concurrent programming and operating systems

27 ang 2011, 14:00-18:00 U10, TER1

! Jour: Christoph Kessler (070-3666687, 013-282406), visiting ca. 16:00

Hjilpmedel / Admitted material:

— Engelsk ordbok / Dictionary from English to your native language;
— Miniriknare / Pocket calculator

General instructions

» This exarn has 8 assignments and 6 pages, including this one.
Read all assignments carefully and completely before you begin.

o It is recommended that you use a new sheet of paper for each assignment, because they will be
corrected by different persons.
Sort the pages by assignment, number them consecutively and mark each one on top with your
exam ID and the course code.

» Yon may answer in either English or Swedish.

o Write clearly. Unreadable text will be ignored.

» Be precise in your statements. Unprecise formulations may lead to 2 reduction of points,
» Motivate clearly all statements and reasoning.

e Explain calculations and solution procedures.

» The assignments are not ordered according to difficulty.

o The exam is designed for 40 points. You may thus plan about 5 minutes per point.

s Grading: U, 3,4, 5. The preliminary threshold for passing is 20 points.

Students in international rnaster programs and exchange students will receive ECTS grades. Due
to the anonymization of written exam correction, BCTS grades will be set by one-to-one trans-
lation from swedish grades (5=A, 4=B, 3=C, U=FX), according to the regulations by LinkOping
upiversity.

i. (6.5 p.) Interrupts, processes and threads

(a) Define the terms process, kernel thread and user thread, and explain the differences

between them. (3p)

(b) What is a process control block (PCB)?
What is its purpose?

What data is contained in the PCB of a single-threaded process? (at least 4 relevant

items are expected) (2p)

(c) What is a thread pool?
How can using a thread pool improve performance? (1.5p)

2. (1.5 p.) Synchronization

A train with S seats goes from city Cy to city C, with stops in C, Co, ...
figure). Segment 1 is the direct connection between cittes C;and Ciyg, for0 <i < n~—1.

, O (see the

seat: s Segment
01234 - i 1
ofoli[iliitJoJo[ai[ifol1jo]1]t
FI1|1]0i1] i1t fOO]1 1|11}
war | 2LJO13TLTO T L3t 1 1 1 1]110,0
sfrivina|ajaaqafrenqefajale]y
afofojifififolof1loloj0iojtit]]
-1 k
C, s-1ojojofo|lit[1j0j0j0ia[0l0|0]0
The railway company allows to book seats for any partial contignous subsequence of

segments 7.5 with 0 < ¢ < j < n. Booked seats can also be canceled.

For this purpose, a server program had been written. As main data structure representing
the S seats over all n segments, a two-dimensional integer array seat[S][n] is used,
where seat[k]ls] is 1 if seat k is booked for the segment i, and O otherwise (see the
figure). Initially, all array entries are set to O before any booking requests are accepted

for processing.

The following C function implementis a first-fit algorithm that searches for a free seat
from segment i to (precondition: 0 < ¢ £ 7 < n), and either books and returns the

booked seat number if one was available, or retums —1 otherwise:

int book { unsgigned int i, unsigned int j)
{
int k, L
for {k=0; k<8; k++) { // try all seats
int found_k = 1;
for (t=i; t<=j; L++}
if (seatik![t]) { // if seat k is taken anywhere in i...J,

found_k = 0; // we cannot bock it.
break; // try next k
} ‘
if (found k) { // seat k was available for i...j:

for (t=i; t<=ij; t++) // now book it
seat [k1[t] = 1;
return k;
}
}

// if we arrive here, no seat was available for i...79:
return -1;

¥

Canceling a seat for segments 4...J (again with precondition 0 <@ < 7 < n) is done by
the following routine:

void cancel (unsigned int k, unsigned int i, unsigned int 1)
{
int
for (t=i; t<=sj; te+)
seat[ki[t]l = 0;

The railway company has now acquired a new multiprocessor server. ‘The entire seat
booking program (not shown) is being multithreaded so that it can concurrently process
multiple requests for booking or canceling that come in from various clients. The above
seat data structure is to be held in (shared) memory, and it is your job to make the ac-
cesses to it (i.e., functions book and cancel) thread-safe, which means that concurrent
calls do not lead to erroneous behavior such as double bookings of a seat.

(2) Give a concrete example that demonstrates how, without proper synchronization,
two concurrent calls to book could lead to a double booking of the same seat. (1p)
(b) Identify the critical section(s) in the functions book and cancel. (1.5p)
(You can assume that load and store instructions are atomic.)

(c) Protect the code against race conditions with a single mutex Jock. (1p)

(d) Assume that the rate of incoﬁxing concurrent calls to book and cancel is very
high. Design a more fine-grained synchronization mechanism for the above data
structure (i.e., try to make the critical section(s) short). Show the resulting code.

Explain how this modification can improve system throughput in COmparison 1o a
coarse-grained synchronization approach. (2.5p)

(e) What is a reader-writer lock?

Under what conditions are reader-writer locks more suitable than ordinary mutual
exclusion locks in order to increase system throughput? (1.5p)

3. (5 p.) CPU Scheduling

Given a single-CPU system and the following set of processes with arrival times (in
milliseconds), expected maximum execution time (ms), and priority (1 is highest, 5 is
lowest priority).

Process Arrival time Execution time Priority (as applicable)

P, 0 5 4
P, 1 7 2
j o3 3 2 5
P, 9 3 3
Py 10 1 1

For each of the following scheduling algorithms, create a Gantt chart (time bar diagram,
starting at £ = 0) that shows when the processes will execute on the CPU. Where appli-
cable, the time quantum will be 4 ms. Assume that a task will be eligible for scheduling
immediately on arrival. If you need to make further assumptions, state them carefully
and explain your solution. (5p)

(1) FIFO;

(i1) Round-robin;

(iii) Shortest Job First without preemption;
(iv) Prionty Scheduling without preemption.
(v) Priority Scheduling with preemption.

. (4.5 p.) Deadlocks

(a) There are four conditions that must hold for a deadlock to become possible. Name
and describe them briefly. (2p)

(b) What is the difference between deadlock and starvation? (1p)
(c) Consider the following pseudocode:

mutex lock_t 11, 12, 13;

void Ti{ void)

{
mutex lock({ &11 };
mutex lock(&12 };

mutex release{ &12);
mutex release(&11);
matex lock{ &13 };

mutex_release(&13);

}

void T2(void)

{
matex lock(&312) ;
matex lock(&13);

murex_release(&13);
mutex_releagse(&12);

}

void T3{ void)

{

mutex lock{ &13);
mutex lock({ &1 };

mutex release{ &11);
mutex release{ &13 };

}

void main { void)
{
create 3 threads that execute T1(), T2{), T3() respectively

}

There are 2 threads that concurrently execute the functions T1, T2 and T3 respec-
tively, which need to acquire and release mutunal exclusion locks in order to perform
their work (...).

Is this program deadlock-free?

If yes, give a formal argurnent why.

If not, give a formal argument why, and a counterexample. (1.5 p)

5. (8 p.) Memory management

(a) Which kind of fragmentation (external or internal) can occur in contiguous memory
allocation? Explain your answer. (1p)

(b) Several 32-bit processors use three-level paging to address the large page table
problem, where the page table itself is stored in main memory. (If you don’t recall
three-level paging, you may answer, with reduced points, this and the following
question for one- or two-level paging.)

Explain three-level paging for a 32-bit virtual address space and a memory page size
of 1024 bytes. Show the structure of virtual (logical) addresses and explain (with a
well commented drawing) how to compute physical memory addresses. (2.5p)

(c) As in one-level paging, a TLB can be used with three-level paging to speed up
address calculations for frequently accessed pages. Given the average time &, =
60ns for a physical memory access, time frzp == 1 ns for a TLB access, and an
assumed TLB hit rate of 0.99 = 99%, determine the effective memory access time
in three-level paged memory. Explain your calculation carefully. (1.5p)

(d) Explain how segmented virtual memory supports sharing of memory segments be-
tween processes. (1p)

(e) Describe the principle of segmentation.

Why would one prefer a segmented memory model instead of a paged memory
model?
And which drawback does segmentation have, compared to paging? (2p)

6. (4.5 p.) File systems
(2) What information is usually contained in a file control block (FCB)? (At least 4
different items are expected) (1p)
(b) Where is the FCB contents stored after a file has been opened? (0.5p)
(c) Describe one technique to extend indexed allocation for large files. (1p)

(d) Describe one case where the file system is not an appropriate abstraction for sec-
ondary storage, and explain why. (1p)

(e) Name and describe one disk scheduling algorithm of your choice (but not FIFO/FCFS,
which is a trivial one). (1p)

7. (1 p.) OS Structures

(a) Define the term layered operating system carefully. (1p)

8. (3 p.) Protection and Security

 (2) What is a Trojan Horse attack? Explain the term in general and give one example
scenario. (2p)

(b) How can using virtual machines increase the security of a system? (1p)

Good luck!

