%,

11. N
)

}~

1 & Ix
-1-“1 s

s Forsattsblad till skriftlig
tentamen vid Linképings Universitet

(fyils i av ansvarig)

Datum for tentamen 13 jan 2010

Sal Ul4

"id 08-12

Kurskod TDDB63

Provkod TEN1

Kursnamn/beniimning Processprogrammering och
operativsystem

Institution IDA

Antal uppgifter som 8

ingar i tentamen

‘Antal sidor p4 tentamen |6

(inkl. forsittsbladet)

Jour/Kursansvarig Christoph Kessler

~_“elefon under skrivtid 0703-666687

Besoker salen ca KL 10:00

Kursadministrator
(namn + tfonr + mailadress)

Gunilla Mellheden, 013-282297 e.
0705-979044, sunme @ida.liu.se

Tillatna hjilpmedel

Engelsk ordbok, minirdknare

Ovrigt

(exempel nir resultat kan ses pa
webben, betygsgriinser, visning,

ovriga salar tentan gir i m.m.)

Linkopings universitet
IDA Department of Computer and Information Sciences
Prof. Dr. Christoph Kessler

TENTAMEN / EXAM

TDDB6S

Processprogrammering och operativsystem /
Concurrent programming and operating systems

13 jan 2010, 08:00-12:00 U14

Jour: Christoph Kessler (070-3666687, 013-282406), visiting ca. 10:00

Hjilpmedel / Admitted material:

— Engelsk ordbok / Dictionary from English to your native language;
— Miniriknare / Pocket calculator

General instructions

o This exam has 8 assignments and 5 pages, including this one.
Read all assignments carefully and completely before you begin.

o It is recommended that you use a new sheet for each assignment. Number all your sheets,
and mark each sheet on top with your exam ID and the course code.

o You may answer in either English or Swedish.

o Write clearly. Unreadable text will be ignored.

« Be precise in your statements. Unprecise formulations may lead to a reduction of poinis.
¢ Motivate clearly all statements and reasoning.

 Explain calculations and solution procedures.

e The assignments are not ordered according to difficulty.

o The exam is designed for 40 points. You may thus plan about 5 minutes per point.

e Grading: U, 3, 4, 5. The preliminary threshold for passing is 20 points.

Students in international master programs and exchange students will receive ECTS
grades, Due to the anonymization of written exam correction, ECTS grades will be set
by the central administration where appropriate, following the 1.inkoping university rule
for translation from swedish grades (5=A, 4=B, 3=C, U=FX).

1. (7.5 p.) Interrupts, processes and threads

(a) Define the terms process, kernel thread and user thread, and explain the differences
between them. (3p)

(b) What is a process control block (PCB)?
What is its purpose?
What data is contained in the PCB of a single-threaded process? (at least 4 relevant
items are expected) (2p)
‘What data is contained in a thread control block (TCB) of a thread in a multithreaded
process? (at least 2 relevant iterns are expected) (0.5p)

(c) What is the purpose of Direct Memory Access (DMA)? How is it realized in a com-
puter system, and how is it used? In what cases (condition) does it improve system
performance? (2p)

2. (5.5 p.) Synchronization

Consider an ordinary hash table T' of size M designed for a single-threaded environment.
A hash function k that maps data items to the range {0, ..., M — 1} is given. Data items
u, v hashed to the same hash value h{u) = h(v} = 7 are chained in a singly-linked list,
such that list 7[¢] contains all items with hash value i (see the picture). Each list item
contains a data element and a next pointer to the next item in the list (NULL for the last
element in a list). Bach T'[i] points to the first item in its list (or T'[¢] is NULL if the 4th
listisempty), ¢ =0,..,M — 1.

T

o | — [l A I

M-1| —] 1

A sequential implementation is given as follows. List elements are represented by the
following data type:

struct htelem {
struct dataltem *iltem;
atruct htelem *next;

}i

The operation insert(T,u) inserts a data item u into hash table T at the beginning of
list T[h(u)]:

void insert (struct htelem *T[], struct dataitem *u)
{

int 1 = h{u);

atruct htelem *e = (struct htelem *) malloc(sizeof (struct htelem)) ;

e->item = u;
e->next = T{il];
T[i] = e;

}

The boolean operation 1ookup(T, u) checks whether item u is currently stored in T or
not:

int lookup (struct htelem *T[], struct dataitem *u)
{

int i = h{u);

struct htelem *p;

for (p = T[ii; p!=NULL; p = p->next)

if (equal(u, p~>item })
return 1;
return 0;

}

where the boolean function equal(u, v) tests for equality of two data items u and v.

(a) Give an example scenario of a race condition with two threads that concurrently in-
sert iters into an unprotected shared hash table on a multi-tasking single-processor
system with preemptive scheduling. Le., give two different interleavings of the ex-
ecution of two threads that lead to incorrect behavior, possibly even to a corrupted
data structure or a run-time error. (1p)

Your task will now be to make the hash table implementation thread-safe to allow a
hash table stored in shared memory to be accessed properly by multiple threads:

(b) ldentify the critical section(s) in your pseudocode and suggest how to protect them
properly against race conditions by using a single mutex lock. Show the revised
(pseudo) code. (2p)

(c) What is the disadvantage of a single-lock solution if there are many threads access-
ing T' frequently, and why? (0.5p)
Describe a multi-lock approach that solves that problem. Why is the multi-lock
approach better? (1p)

(d) Threads executing an insert operation modify the status of T, while threads ex-
ecuting a Lookup do not change it. Assume that 1ookup operations occur much
more often than insert operations. Suggest a lock-based protection technique
that exploits this fact to improve the degree of concurrency compared to your pre-
vious solation. (No details, no code. Just give the technical term and the basic idea
how it works.) (1p)

3. (5 p.) CPU Scheduling

Given a single-CPU system and the following set of processes with arrival times (in
milliseconds), expected maximum execution time (ms), and priority (1 is highest, 5 is
lowest priority).

Process Arrival time Execution time Priority (as applicable)

P, 0 5]
P 2 7 5
P 4 2 3
P, 7 3 2
Py 8] 1

For each of the following scheduling algorithms, create a Gantt chart (time bar diagram,
starting at £ = 0) that shows when the processes will execute on the CPU. Where appli-
cable, the time quantum will be 3 ms. Assume that a task will be eligible for scheduling
immediately on arrival. If you need to make further assumptions, state them carefully
and explain your solution. (5p)

(i) FIFO;

(ii) Round-robin;

(iii) Shortest Job First without preemption;
(iv) Priority Scheduling without preemption.
(v) Priority Scheduling with preemption.

4. (5 p.) Deadlocks

(a) There are four conditions that must hold for a deadlock to become possible. Name
and describe them briefly. (2p)

(b) You are given a system with 4 types of resources, A, B, C and D. There are 3
instances of A, 5 instances of B, 1 instance of C and 6 instances of D. Currently,
4 processes Py...Py are running, and for each process, the resources currently held
and its total maximum resource need (including the already held ones) for each type
are given as follows:
Process Already held Maximum total need
ABCD ABCD

P 0101 0204
P, 1002 2203
Py 1210 2213
Py 0002 1014

(i) Show that the system is currently in a safe state (calculation). (1 Sp)

(ii) In the situation given above, Process P, now asks for 1 instance of B and 1 of
D. in addition to the B and D it already has. Is it safe to grant the request? Why or
why not? (calculation) (1.5p)

5. (8 p.) Memory management

(a) Explain how paging supports sharing of memory between processes. (1p)

(b) Given a virtual memory system with 4 page frames, how many page faults occur
with the Least-Recently Used replacement strategy when pages are accessed in the
following order:

1,2,3,4,5,1,2,1,3,6,1,2,5.
(Justify your answer. Just guessing the right number is not acceptable.) (1.5p)

(c) What is Belady's anomaly in page frame allocation for virtual memory?

Give a simple argument that proves that an optimal page replacement strategy can
never have Belady’s anomaly. (2p)

(d) What is thrashing in a virtual memory system? How does it occur? And what can
be done about it? (2p)

(e) What is data access locality, and why is it an important property of programs that
run on a system with virtual memory? (1.5p)

6. (4.5 p.) File systems

(@) Does a hard link to the file exam .pdf still work after the command
mv exam.pdf archive/exam.pdf? Why or why not? (1p)

(b) What information is usually contained in a file control block (FCB)? (At least 4
different items are expected) (1p)

(c) What is the basic idea and motivation of the Unix inode structure? (1.5p)
(d) How does the file system implementation keep track of unused disk space? Sketch
one possible technique for free-space management. (1p)

7. (2.5 p.) OS Structures and Virtualization

(2) What are the two main disadvantages of strict layering (with more than just very
few layers) in operating systems? (1p)

(b) What is the main idea of the microkernel approach to OS structuring, and what is
its main drawback? (1.5p)

8. (2 p.) Protection and Security

(a) How does memory segmentation support protection? (1p)

(b) How can using virtual machines increase the security of a system? (1p)

Good luck!

