Tentamen /Exam
TDDB44 Kompilatorkonstruktion / Compiler Construction
TDDD55 Kompilatorer och interpretatorer / Compilers and Interpreters

2018-01-10, 08:00 — 12:00

Hjélpmedel / Allowed material:
e Engelsk ordbok / Dictionary from/to English to/from your native language
e Miniréknare / Pocket calculator
General instructions:
e Read the instructions and examination procedures for exams at LiU.
e Read all assignments carefully and completely before you begin.

e Note that not every problem is for all courses. Watch out for comments like “I'DDD55
only”.

e You may answer in Swedish or in English.

e Write clearly — unreadable text will be ignored. Be precise in your statements — impre-
cise formulations may lead to reduction of points. Motivate clearly all statements and
reasoning. Explain calculations and solution procedures.

e The assignments are not ordered according to difficulty.
e The exam is designed for 40 points (per course). You may thus plan 6 minutes per point.
e Grading: U, 3, 4, 5 resp. Fx, C, B, A.

e The preliminary threshold for passing (grade 3/C) is 20 points.




1. (TDDD55 only — 6p) Formal Languages and Automata Theory

Consider the language L consisting of all strings w over the alphabet {0, 1} such that
every string which contain 00 also contain 11. Example of strings in the language: 0, 1,
11, 1101001001101, 1001011. Examples of strings not in the language: 101001, 0010.

(a) (1.5p) Construct a regular expression for L.

(b) (1.5p) Construct from the regular expression an NFA recognizing L.

(c) (2.5p) Construct a DFA recognizing L, either by deriving it from the NFA or by
constructing it directly.

(d) (0.5p) Give an example of a formal language that is not context-free.

2. (3p) Compiler Structure and Generators

(a) (2p) What are the generated compiler phases and what are the corresponding for-
malisms (mention at least 5 phases and 3 formalisms) when using a compiler gener-

ator to generate a compiler?

(b) (1p) Most modern compilers have not just one, but several intermediate representa-
tions (IR). What is the advantage of having more than one IR, and what could be

the drawback?

3. (3p) Symbol Table Management

Describe what the compiler — using a symbol table implemented as a hash table with
chaining and block scoped control — does in compiling a statically scoped, block structured
language when it handles:

(a) (0.5p) block entry

(b) (1.0p) block exit

(c) (0.5p) a variable declaration
) (

(d) (1.0p) a variable use.




4. (5p) Top-Down Parsing
Given a grammar with nonterminals X, Y, Z, and S, where S is the start symbol, and the
following productions:

1. S ::=X "X
2. X =X %Y
3 Iy
4, Y 1:=Z + Y
5 | Z
6. Z ::=

7 I

Assume that *, *, and + are operators.

(a) (1p) What is the associativity (right, left, none) of the operators?

(b) (1p) What is the precedence (relative priority) between the operators?

(c) (2p) Can the grammar be used directly for a recursive-descent parser? Motivate
your answer. If not, rewrite the grammar so that the language it defines can be
parsed using the recursiuve-descent method.

(d) (2p) Write a recursive-descent parser to analyze the language defined by the gram-
mar. (Pseudocode/program code without declarations is fine. Use the function
scan() to read the next input token, and the function error() to report errors if
needed.)




5. (TDDD55 only - 6p) LR parsing

(a) (3p) Use the SLR(1) tables below to show how the string 1-2-1%2 is parsed. You
should show, step by step, how stack, input data etc. are changed during the parsing.
Start state is 00, start symbol is 8.

Grammar:

1. S ::= A+ A

2. A ::=B - A

3. | B~

4. B ::=B % C

5 | C

6. C ::=1

7 | 2

Tables:

Action GOTO

State $ + - * 1 2 S A B C
00 * * * * 809 810 01 02 05 08
01 A * * * * * I S
02 ¥ S03 * * * * * % % *
03 * * * * 809 810 * 04 05 08
04 R1 % * * * * ¥ ok k%
05 R3 R3 806 Si1 * ¥ % k%
06 * * * * 809 810 * 07 0b 08
07 R2 R2 * * * * * * *
08 R5 R5 R5 RE * ok % %
09 R6 R6 R6 R6 ¥ % k%
10 R7 R7 R7 R7 * * * * *
11 * * * * 809 Si10 ¥ % k12
12 R4 R4 R4 R4 * * * * * *

(b) (3p) The tables above are SLR(1) tables. Explain what the difference is from LR(0)
tables. Show how to transform the tables into LR(0) tables or explain why this is
not possible without rewriting the grammar.




6. (TDDB44 only — 6p) LR parsing

Given the following grammar G for strings over the alphabet {1,2, 3,4} with nonterminals
S, A and B, where 8 is the start symbol:

A2
B 1
B 3
A2
A4

NOO Otk W e
I S R T T = SEG -8

Is the grammar G in SLR(1) or even LR(0)? Justify your answer using the LR, item sets.
If it is: construct the characteristic LR-items NFA, the corresponding GOTO graph, the
ACTION table and the GOTO table and show with tables and stack how the string

1214311 is parsed.

If it is not: describe where/how the problem occurs.

7. (5p) Syntax-Directed Translation

The Pascal language has a break statement that works similar to the following grammar:

<while_loop> ::= while <expression> do begin <stmt_list> end semicolon
<stmt_list> ::= <stmt_list><stmt> |

Il

<stmt> = | break semicolon
(where “...” represents all other possible kinds of statements). break means that
execution directly jumps to the exit of the enclosing loop.
Example:
while i<10 do
begin
1= 1+41;
if i>5 then

break; (x Jump to L1 %)
writeln (i);
end;
Li:

Write a syntax-directed translation scheme, with attributes and semantic rules, for trans-
lating statements with break inside them, to quadruples. Note that break may only ap-
pear inside loop constructs; report errors using error (). The translation scheme should
be used during bottom-up parsing. You are allowed to define and use symbolic labels. You
may need to rewrite the grammar. Explain all the attributes, functions, and instructions
that you introduce. State all your assumptions. (Since it is a syntax-directed transla-
tion scheme, not an attribute grammar, generation of a quadruple puts it in an array of
quadruples and attribute values are “small” values such as single quadruple addresses.)




8. (3p) Error Handling

Explain, define, and give examples of using the following concepts regarding error han-
dling:

(a) (1p) Valid prefix property,

(b) (1p) Phrase level recovery,
(c) (1p) Global correction.

9. (3p) Memory management

(a) (1p) Non-local references: How does a static link work?

(b)
)

(c) (1p) Dynamic data: How is the actual size and contents of a dynamic array handled?

(1p) Non-local references: How does a display work?

10. (6p) Intermediate Code Generation

(a) (3p) Given the following code segment in a Pascal-like language:

if x=y
then x:=x-10
else while y>10 do
if y<x
then y:=y+1
else y:=func(x)

Translate the code segment into an abtract syntax tree, quadruples, and postfix
code.

(3p) Divide the following code inte basic blocks, draw a control flow graph, and show
as well as motivate the existing loop(s):

goto L2
Li: x:=x+1
L2: x:=x+1
x:=x+1

if x=1 then goto L1
L3: if x=2 then goto L4

goto Lb
L4: x:=x+1
L5: x:=x+1

if x=4 then goto L3




11. (TDDB44 only — 6p) Code Generation for RISC, etc.

(a) (1.5p) Explain the main similarity and the main difference between superscalar and
VLIW architectures from a compiler’s point of view. Which one is harder to generate
code for, and why?

(b) (1.5p) Explain briefly the concept of software pipelining. Show it with a simple
example.

(¢) (2p) What is branch prediction and when is it used? Why is this important for
pipelined processors?

(d) (1p) What is a live range? Explain the concept and show a simple example.

12. (TDDB44 only — 3p) Compiler Lab Exercises

Points are fetched from LADOK and granted automatically provided the labs were fin-
ished on time. Only write something in this assignment if you believe you should have
been reported in LADOK but was not registered yet for some reason.




