
Tentamen/Exam
TDDB44 Kompilatorkonstruktion / Compiler Construction

TDDD55 Kompilatorer och interpretatorer / Compilers and Interpreters

2017-08-24, 08:00 – 12:00

Hjälpmedel / Allowed material:

• Engelsk ordbok / Dictionary from/to English to/from your native language

• Miniräknare / Pocket calculator

General instructions:

• Read the instructions and examination procedures for exams at LiU.

• Read all assignments carefully and completely before you begin.

• Note that not every problem is for all courses. Watch out for comments like “TDDD55
only”.

• You may answer in Swedish or in English.

• Write clearly – unreadable text will be ignored. Be precise in your statements – impre-
cise formulations may lead to reduction of points. Motivate clearly all statements and
reasoning. Explain calculations and solution procedures.

• The assignments are not ordered according to difficulty.

• The exam is designed for 40 points (per course). You may thus plan 6 minutes per point.

• Grading: U, 3, 4, 5 resp. Fx, C, B, A.

• The preliminary threshold for passing (grade 3/C) is 20 points.

1

1. (TDDD55 only – 6p) Formal Languages and Automata Theory

Consider the language L consisting of all strings w over the alphabet {0, 1} such that
every string contains 00 and does not contain 11. Example of strings in the language:
110100100101, 100101. Examples of strings not in the language: 10101, 011010.

(a) (1.5p) Construct a regular expression for L.

(b) (1.5p) Construct from the regular expression an NFA recognizing L.

(c) (2.5p) Construct a DFA recognizing L, either by deriving it from the NFA or by
constructing it directly.

(d) (0.5p) Give an example of a formal language that is not context-free.

2. (3p) Compiler Structure and Generators

(a) (2p) What are the generated compiler phases and what are the corresponding for-
malisms (mention at least 5) when using a compiler generator to generate a compiler?

(b) (1p) Most modern compilers have not just one, but several intermediate representa-
tions (IR). What is the advantage of having more than one IR, and what could be
the drawback?

3. (3p) Symbol Table Management

The C language allows static nesting of scopes for identifiers, determined by blocks en-
closed in braces. Given the following C program fragment (some statements are omitted):

int m;
int main (void) {

int i ;
i f (i ==0) {

int j , m;
for (j =0; j <100; j++) {

int i ;
i = m ∗ 2 ;

}
}

}

(a) (2p) For the program point containing the assignment i = m * 2, show how the
program variables are stored in the symbol table if the symbol table is to be realized
as a hash table with chaining and block scope control. Assume that your hash
function yields value 3 for i, value 1 for j and m, and value 4 for main.

(b) (0.5p) Show and explain how the right entry of the symbol table will be accessed
when looking up identifier m in the assignment i = m * 2.

(c) (0.5p) After code for a block is generated, one needs to get rid of the information for
all variables defined in the block. Given a hash table with chaining and block scope
control as above, show how to “forget” all variables defined in the current block,
without searching through the entire table.

2

4. (5p) Top-Down Parsing

(a) (4.5p) Given a grammar with nonterminals S, A, B and the following productions:

S ::= S 1 | A B 2 | A B 3

A ::= A 4 | 5

B ::= B 6 | ε

where S is the start symbol, 1, 2, 3, 4, 5 and 6 are terminals. (ε is the empty string!)
What is/are the problem(s) with this grammar if it is to be used for writing a
recursive descent parser with a single token lookahead? Resolve the problem(s), and
write a recursive descent parser for the modified grammar. (Pseudocode/program
code without declarations is fine. Use the function scan() to read the next input
token, and the function error() to report errors if needed.)

(b) (0.5p) The theory for formal languages and automata says that a stack is required for
being able to parse context-free languages. We have used such a stack, for instance,
in the LL-item pushdown automaton in the lecture on top-down parsing. But where
is the corresponding stack in a recursive descent parser?

3

5. (TDDD55 only – 6p) LR parsing

(a) (3p) Use the SLR(1) tables below to show how the string a%b#a&b is parsed. You
should show, step by step, how stack, input data etc. are changed during the parsing.
Start state is 00, start symbol is S.

Grammar:

1. S ::= X # X

2. X ::= Y % X

3. | Y

4. Y ::= Y & Z

5. | Z

6. Z ::= a

7. | b

Tables:
Action GOTO

State $ # % & a b S X Y Z

00 * * * * S09 S10 01 02 05 08

01 A * * * * * * * * *

02 * S03 * * * * * * * *

03 * * * * S09 S10 * 04 05 08

04 R1 * * * * * * * * *

05 R3 R3 S06 S11 * * * * * *

06 * * * * S09 S10 * 07 05 08

07 R2 R2 * * * * * * * *

08 R5 R5 R5 R5 * * * * * *

09 R6 R6 R6 R6 * * * * * *

10 R7 R7 R7 R7 * * * * * *

11 * * * * S09 S10 * * * 12

12 R4 R4 R4 R4 * * * * * *

(b) (3p) Explain the concept of conflict in LR parsing – what it is and how it could be
handled.

6. (TDDB44 only – 6p) LR parsing

Given the following grammar G for strings over the alphabet {a,b,p,q} with nonterminals
X and Y, where X is the start symbol:

X ::= aX | Xb | aYb | p

Y ::= bY | Ya | bXa | q

Is the grammar G in SLR(1) or even LR(0)? Justify your answer using the LR item sets.
If it is: construct the characteristic LR-items NFA, the corresponding GOTO graph, the
ACTION table and the GOTO table and show with tables and stack how the string abpab

is parsed.

If it is not: describe where/how the problem occurs.

4

7. (5p) Syntax-Directed Translation

A Pascal-like language is extended with a restartblock statement according to the
following grammar:

<block> ::= begin <stmt_list> end

<stmt_list> ::= <stmt_list><stmt> |

<stmt> ::= <assignment> | ... | restartblock

(where “...” represents all other possible kinds of statements). restartblock means
that execution restarts at the beginning of the immediately enclosing block.

Example:

begin

x:=17;

L1: begin

y:=y-42;

if p=4711

L2: then restartblock;

else q:=q-1;

L3: end;

end;

where restartblock at L2 means a jump to L1 (i.e. the beginning of the enclosing block).

(a) (4p) Write a syntax-directed translation scheme, with attributes and semantic rules,
for translating <block>s, and restartblocks inside them, to quadruples. The trans-
lation scheme should be used during bottom-up parsing. You are not allowed to
define and use symbolic labels, i.e. all jumps should have absolute quadruple ad-
dresses as their destinations. You may need to rewrite the grammar. Explain all the
attributes, functions, and instructions that you introduce. State all your assump-
tions. (Since it is a syntax-directed translation scheme, not an attribute grammar,
generation of a quadruple puts it in an array of quadruples and attribute values are
“small” values such as single quadruple addresses.)

(b) (1p) What problem would occur in handling of the translation scheme if instead of
restartblock there would be an exitblock statement that jumped to the end of
the immidiately enclosing block (instead of the begin), i.e. to L3 in this example?

8. (3p) Error Handling

Explain, define, and give examples of using the following concepts regarding error han-
dling:

(a) (1p) Valid prefix property,

(b) (1p) Phrase level recovery,

(c) (1p) Global correction.

5

9. (3p) Memory management

(a) (1p) What does an activation record contain?

(b) (1p) What happens on the stack at function call and at function return?

(c) (1p) What are static and dynamic links? How are they used?

10. (6p) Intermediate Code Generation

(a) (3p) Given the following code segment in a Pascal-like language:

if fib(x)>4711

then z=0

else repeat

y=fac(x);

x=x+y;

until x>50000

Translate the code segment into an abtract syntax tree, quadruples, and postfix
code.

(b) (3p) Divide the following code inte basic blocks, draw a control flow graph, and show
as well as motivate the existing loop(s):

goto L2

L1: x:=x+1

L2: x:=x+1

x:=x+1

if x=1 then goto L1

L3: if x=2 then goto L4

goto L5

L4: x:=x+1

L5: x:=x+1

if x=4 then goto L3

11. (TDDB44 only – 6p) Code Generation for RISC, etc.

(a) (2p) Explain the main characteristics of CISC and RISC architectures, and their
differences.

(b) (1.5p) Explain the main similarity and the main difference between superscalar and
VLIW architectures from a compiler’s point of view. Which one is harder to generate
code for, and why?

(c) (1.5p) Explain briefly the concept of software pipelining. Show it with a simple
example.

(d) (1p) What is a live range? Explain the concept and show a simple example.

6

