: Forsattsblad till skriftlig tentamen vid

...T‘\

>/ Lmkoplngs Universitet

Datum for tentamen 2014 01 15
Sal (1)__“) P
gz;;zaﬁdgﬁll \g‘g: ::Il Egcilk?ir?guabifovgizllkzt; sal som KARA
avses
Tid - |14-18 _
Kurskod - [TDDD55
Provked CTENI
Kursnamn/benéimning Komp llatorer och
Provnamn/benimning 1nterpr_e taF orer

En skriftlig tentamen
Institution DA

Antal l-lp[_ng‘f_tél‘ som ingar i
tentamen

J our/Kursansvarlg
Ange vem som besoker salen
Telefon under skrlvtlden
§Besoker salen ca kl

e

Kursadministrator/kontaktperson
(namn + tfnr + mailaddress)

I

17

/),pv\&} wwj""‘“

1§00 (F.ee
Liselotte Lundberg
281278

liselotte. lundberg@llu se

‘Tiliéitna hjalpmedel | se derdmas Cisw\{ ks L
lOvrlgt) -
‘Vllken typ av papper ska | -
anvindas, rutigt eller linjerat o)
Aﬁtal exemplar i pasen e

TR VURURIL I POIP PR U e alane

Tentamen /Exam
TDDB44 Kompilatorkonstruktion / Compiler Construction
TDDD55 Kompilatorer och interpretatorer /
Compilers and Interpreters

2014-01-15, 14.00 - 18.00

Hjélpmedel / Allowed material:

Engelsk ordbok / Dictionary from/to English to/from your native language

Miniréknare / Pocket calculator

General instructions:

Read all assignments carefully and completely before you begin
Note that not every problem is for all courses. Watch out for comments like “TDDD55 only”.
You may answer in Swedish or in English.

Write clearly — unreadable text will be ignored. Be precise in your statements — unprecise for-
mulations may lead to reduction of points. Motivate clearly all statements and reasoning. Explain
calculations and solution procedures.

The assignments are not ordered according to difficulty.
The exam is designed for 40 points (per course). You may thus plan 6 minutes per point.
Grading: U, 3, 4, 5 resp. Fx, C, B, A.

The preliminary threshold for passing (grade 3/C) is 20 points.

. (TDDD55 only - 6p) Formal Languages and Automata Theory

Consider the language L consisting of all strings w over the alphabet {0, 1} such that every
occurrence of 00 in w is immediately followed by 11. (Some strings in the language: 11,
10101, 100110, 10100110101001110. Some strings not in the language: 00, 101001001.)

(a) (1.5p) Construct a regular expression for L.
(b) (1.5p) Construct from the regular expression an NFA recognizing L.

(¢) (2.5p) Construct a DFA recognizing L, either by deriving it from the NFA or by con-
structing it directly.

(d) (0.5p) Why is L; = {a™b™c"d"} a context-free language but not Ly = {a™b"c"d"}?
(For all strings in L; the number of a:s and b:s are the same, and the number of ¢:s and
d:s are the same. For all strings in L, the number of a:s and c:s are the same, and the
number of b:s and d:s are the same.)

. (2p) Compiler Structure and Generators

(a) (Ip) What are the advantages and disadvantages of a multi-pass compiler (compared to
an one-pass compiler)?

(b) (1p) Most modern compilers have not just one, but several intermediate representa-
tions(IR). What is the advantage of having more than one IR, and what could be the
drawback?

. (2p) Symbol Table Management

Describe what the compiler — using a symbol table implemented as a hash table with chaining
and block scoped control — does in compiling a statically scoped, block structured language
when it handles:

(a) (0.5p) block entry

(b) (0.5p) block exit

(c) (0.5p) a variable declaration
(d) (0.5p) a variable use.

4. (5p) Top-Down Parsing

(a) (4.5p) Given a grammar with nonterminals 8, A, and B, and the following productions:

S:2=18]182] A2
A ::=3A | 3B
B::=4B | b

where S is the start symbol and 1, 2, 3, 4, and 5 are terminals. What is/are the
problem(s) with this grammar if it is to be used for writing a recursive descent parser
with a single token lookahead? Resolve the problem(s), and write a recursive descent
parser for the modified grammar. (Pseudocode/program code without declarations is
fine. Use the function scan() to read the next input token, and the function error() to
report errors if needed.)

(b) (0.5p) The theory for formal languages and automata says that a stack is required for
being able to parse context-free languages. We have used such a stack, for instance, in
the LL-item pushdown automaton in the lecture on top-down parsing. But where is the
corresponding stack in a recursive descent parser?

5. (6p) Memory management

(a) (1p) What property of programming languages requires the use of activation records?
(b)
()

)

(d) (2p) What are static and dynamic links? How are they used?

(
(1p) What does an activation record contain?
(

2p) What happens on the stack at function call and at function return?

6. (TDDB44 only - 6p) LR parsing
Given the following grammar G for strings over the alphabet {x,y,2,t} with nonterminals A,
B, and C, where A is the start symbol:

A ::=xBx | C
B ::=ytB | y
C::=xBz | y

Is the grammar G in SLR(1) or even LR(0)? Justify your answer using the LR item sets.

If it is: construct the characteristic LR-items NFA, the corresponding GOTO graph, the
ACTION table and the GOTO table and show with tables and stack how the string xytyx
is parsed.

If it is not: describe where/how the problem occurs.

7. (TDDD55 only - 6p) LR parsing

(a) (3p) Use the SLR(1) tables below to show how the string a~b*a+b is parsed. You should
show, step by step, how stack, input data etc. are changed during the parsing. Start
state is 00, start symbol is S.

Grammar:
1. 8 ::=X + X
2. X ::=Y x X
3 | Y
4. Y ::=Y " Z
5 | Z
6. Z ::= a
i | b
Tables:

Action
State $ + % ~ a b S X Y Z
00 * * * * S11 S10 05 04 08 12
01 * * * ¥ 511 S10 * 06 08 12
02 * * ¥ * 8511 S10 * 07 08 12
03 * * * * S11 S10 * *x *x 09
04 * S01 % * * * * ok ok ok
05 A ok ok ok k% * ok k%
06 Ri * * * * * *x k ok %
o7 R2 R2 * * * * I S T
08 R3 R3 S02 S03 = * ¥ ok k%
09 R4 R4 R4 R4 * * * ok ox X
10 R7 R7 R7 R7 * * * ok k%
11 R6 R6 R6 R6 * % * ok kX
12 R5 Rb Rb RB * % ko ok ok %

(b) (3p) Explain the concept of conflict in LR parsing — what it is, how it could be handled.

8. (5p) Syntax-Directed Translation
A Pascal-like language is extended with a restartblock statement according to the following
grammar:

<block> ::= begin <stmt_list> end
<stmt_list> ::= <stmt_list><stmt> |
<stmt> ::= <assigmment> | ... | restartblock

(where “...” represents all other possible kinds of statements). restartblock means that
execution restarts at the beginning of the immediately enclosing block.
Example:
begin
x:=17;

L1: begin

y:=y-42;

if p=4711
L2 then restartblock;

else q:=q-1;

L3: end;
end;

where restartblock at L2 means a jump to L1 (i.e. the beginning of the enclosing block).

(a) (4p) Write a syntax-directed translation scheme, with attributes and semantic rules, for
translating <block>s, and restartblocks inside them, to quadruples. The translation
scheme should be used during bottom-up parsing. You are not allowed to define and
use symbolic labels, i.e. all jumps should have absolute quadruple addresses as their
destinations. You may need to rewrite the grammar. Explain all the attributes, func-
tions, and instructions that you introduce. State all your assumptions. (Since it is a
syntax-directed translation scheme, not an attribute grammar, generation of a quadruple
puts it in an array of quadruples and attribute values are ”small” values such as single
quadruple addresses.)

(b) (1p) What problem would occur in handling of the translation scheme if instead of
restartblock there would be an exitblock statement that jumped to the end of the
immidiately enclosing block (instead of the begin), i.e. to L3 in this example?

9. (2p) Error Handling
Explain, define, and give examples of using the following concepts regarding error handling:

(a) (1p) Phrase level recovery,
(b) (1p) Global correction.

10. (6p) Intermediate Code Generation

(a) (3p) Given the following code segment in a Pascal-like language:

if fib(x)>fac(y)
then repeat
Z=Z+X;
x=x+1,;
until z>y or x"2>100;
else z=0

Translate the code segment into an abtract syntax tree, quadruples, and postfix code.

(b) (3p) Divide the following code inte basic blocks, draw a control fow graph, and show
as well as motivate the existing loop(s).

goto L2
L1: x:=x+1
L2: x:=x+1
L3: x:=x+1

if x=1 then goto L1
if x=2 then goto L4

goto L5
L4: x:=x+1
L5: x:=x+1

if x=4 then goto L3

11. (TDDB44 only - 6p) Code Generation for RISC etc.

(a) (2p) Explain the main characteristics of CISC and RISC architectures, and their differ-
ences.

(b) (1.5p) Explain what register allocation and register assignment is (in the context of
code generation), and what the difference is.

(c) (1.5p) Explain briefly the concept of software pipelining. Show it with a simple example.
(d) (1p) What is a live range? Explain the concept and show a simple example.
12. (TDDB44 only - 3p) Compiler Lab Exercises
Correct and complete labs from the 2012 TDDB44 lab course handed in at the latest December

20, 2013, will give 3 points. State if you think that you have fulfilled the conditions and you
should receive these points.

