q‘,,c.s UNy

¥,
& %,
3
>
%
5, o

“’Ncs - ﬁg}

e o 3a%

¥

Forsattsblad till skriftlig

tentamen vid Linkopings universitet

(fylls i av ansvarig)

Datum for tentamen 13-08-26
Sal TER3
Tid 14-18
Kurskod TDDB44
Provkod TEN1
Kursnamn/beniimning Kompilatorkonstruktion
Institution IDA
Antal uppgifter som 11
ingdr i tentamen
Antal sidor pa tentamen

5 blad

(inkl. forsittsbladet)

Jour/Kursansvarig

Kristian Stavaker

Telefon under skrivtid

076-336 17 82

Besoker salen ca kl.

15.00, 16.30

Kursadministrator
(namn + tfnnr + mailadress)

Liselotte Lundberg
28 1278, liselotte.lundberg @liu.se

Tilldtna hjalpmedel

Se tentans forstasida

Ovrigt

(exempel niir resultat kan ses pa
webben, betygsgriinser, visning,

ovriga salar tentan gir i m.m.)

Vilken typ av papper ska Rutat
anviandas, rutigt eller linjerat
Antal exemplar i pasen 12

2009-05-13/lisli

Tentamen /Exam
TDDB44 Kompilatorkonstruktion / Compiler Construction
TDDDb55 Kompilatorer och interpretatorer /
Compilers and Interpreters

2013-08-26, 14.00 - 18.00

Hjalpmedel / Allowed material:

Engelsk ordbok / Dictionary from/to English to/from your native language

Minirdknare / Pocket calculator

General instructions:

Read all assignments carefully and completely before you begin
Note that not every problem is for all courses. Watch out for comments like “TDDD55 only”.
You may answer in Swedish or in English.

Write clearly — unreadable text will be ignored. Be precise in your statements — unprecise for-
mulations may lead to reduction of points. Motivate clearly all statements and reasoning. Explain
calculations and solution procedures.

The assignments are not ordered according to difficulty.
The exam is designed for 40 points (per course). You may thus plan 6 minutes per point.
Grading: U, 3, 4, 5 resp. Fx, C, B, A.

The preliminary threshold for passing (grade 3/C) is 20 points.

1. (TDDD55 only - 6p) Formal Languages and Automata Theory
Consider the language L consisting of all strings w over the alphabet {0,1} such that w
contains 00 or 111 (i.e. at least 2 zeroes in sequence or at least 3 ones in sequence, or both).

(a) (1.5p) Construct a regular expression for L.
(b) (1.5p)

(c¢) (2.5p) Construct a DFA recognizing L, either by deriving it from the NFA or by con-
structing it directly.

Construct from the regular expression an NFA recognizing L.

(d) (0.5p) Give an example of a formal language that is not context-free.

2. (3p) Compiler Structure and Generators

(a) (1p) What are the advantages and disadvantages of a multi-pass compiler (compared to
an one-pass compiler)?

(b) (2p) What are the generated compiler phases and what are the corresponding formalisms
(mention at least 5) when using a compiler generator to generate a compiler?

3. (5p) Top-Down Parsing

(a) (4.5p) Given a grammar with nonterminals <Expr>, <SimpExpr>, <ArrayRef>, and
<IndexExprs> and the following productions:

<Expr> ::= Id | <ArrayRef>

<SimpExpr> ::= Id | Colon

<ArrayRef> ::= Id[<IndexExprs>]

<IndexExprs> ::= <IndexExprs>,<SimpExpr> | <SimpExpr>

“where <Expr> is the start symbol, the comma character(,), Id and Colon are terminals.
(This may e.g. generate expressions such as arr[c,:,:,d,:] were arr, ¢, and d are
identifiers—the colons could be specifying slices.)

What is/are the problem(s) with this grammar if it is to be used for writing a recursive
descent parser with a single token lookahead? Resolve the problem(s), and write a
recursive descent parser for the modified grammar. (Pseudocode/program code without
declarations is fine. Use the function scan() to read the next input token, and the
function error() to report errors if needed.)

(b) (0.5p) The theory for formal languages and automata says that a stack is required for
being able to parse context-free languages. We have used such a stack, for instance, in
the LL-item pushdown automaton in the lecture on top-down parsing. But where is the
corresponding stack in a recursive descent parser?

4. (3p) Symbol Table Management
The C language allows static nesting of scopes for identifiers, determined by blocks enclosed
in braces. Given the following C program:

int m;
int main(void)
{
int i;
// ... some statements omitted
if (d==0) {
int j, m;
// ... some statements omitted
for (j=0; j<100; j++) {
int: ij
// ... some statements omitted
i=m=x* 2;
}
}
}

(a) (2p) For the program point containing the assignment i = m * 2, show how the program
variables are stored in the symbol table if the symbol table is to be realized as a hash
table with chaining and block scope control. Assume that your hash function yields
value 3 for i, value 1 for j and m, and value 4 for main.

(b) (0.5p) Show and explain how the right entry of the symbol table will be accessed when
looking up identifier m in the assignment i = m * 2.

(c) (0.5p) After code for a block is generated, one needs to get rid of the information for
all variables defined in the block. Given a hash table with chaining and block scope
control as above, show how to “forget” all variables defined in the current block, without
searching through the entire table.

5. (3p) Error Handling
Explain, define, and give examples of using the following concepts regarding error handling:
(a) (1p) Valid prefix property,
(b) (1p) Phrase level recovery,
(c) (1p) Global correction.

6. (TDDDS55 only - 6p) LR parsing

(a) (3p) Use the SLR(1) tables below to show how the string a%b#akb is parsed. You should
show, step by step, how stack, input data etc. are changed during the parsing. Start
state is 00, start symbol is S.

Grammar:
1. 8 ;=X # X
2. ¥ ;=Y L X
3. | Y
4. Y ::=Y & Z
5. | Z
6. Z ::= a
T, | b
Tables:

Action Goto
State $ # % & a b S X Y Z
00 * * * * 309 510 01 02 05 08
01 A * * * * * * %k
02 * S03 * * * * * %
03 * *x % *x S09 S10 * 04 05 08
04 R1 * * * * * * *
05 R3 R3 S06 S11 =* * * % %k
06 * % x % 809 S10 * 07 05 08
o7 R2 R2 * * * * * k%
08 R5 R5 R5 Rb ¥ * * k%
09 R6E R6 R6 R6 * * * k%
10 R7 R7 R7 RT * * * k%
11 * ok * % 509 S10 ok x 12
12 R4 R4 R4 R4 * * * ok k%

(b) (3p) Explain the concept of conflict in LR parsing — what it is, how it could be handled.

7. (TDDB44 only - 6p) LR parsing
Given the following grammar G for strings over the alphabet {x,y,z} with nonterminals X
and Y, where X is the start symbol:

X e
Y s

aX | Xb | a¥b | p
bY | Ya | bXa | q

Is the grammar G in SLR(1) or even LR(0)? Justify your answer using the LR item sets.

If it is: construct the characteristic LR-items NFA, the corresponding GOTO graph, the
ACTION table and the GOTO table and show with tables and stack how the string abpab
is parsed.

If it is not: describe where /how the problem occurs.

8. (5p) Syntax-Directed Translation
An Algol-like language is augmented with an if2-statement in the following way:

<if2_statement> ::= if2(<expression_1>,<expression_2>)
both: <statement_1>
first: <statement_2>
secnd: <statement_3>
none: <statement_4>
endif?2;

The if2-statement works like the following nesting of if statements:

if <expression_1>
then if <expression_2>
then <statement_1>
else <statement_2>
else if <expression_2>
then <statement_3>
else <statement_4>;

Write the semantic rules - a syntax directed translation scheme - for translating the if2-
statement to quadruples. Assume that the translation scheme is to be used in a bottom-up
parsing environment using a semantic stack. Use the grammar rule above as a starting point,
but maybe it has to be changed. You are not allowed to define and use symbolic labels, i.e.
all jumps should have absolute quadruple addresses as their destinations. Explain all the
attributes, functions, and instructions that you introduce. State all your assumptions.

9. (3p) Memory management

(1p) Non-local references: How does a static link work?
(1p) Non-local references: How does a display work?

1p) Dynamic data: How is the actual size and contents of a dynamic array handled?

(
10. (6p) Intermediate Code Generation

(a)

(3p) Given the following code segment in a Pascal-like language:
if x<y and y<z
then repeat
y:=y+k
until x<y or y<z
else print(func(y));

Translate the code segment into an abtract syntax tree, quadruples, and postfix code.

(3p) Divide the following code inte basic blocks, draw a control flow graph, and show
as well as motivate the existing loop(s).
Ll xomxsél
L2: xr=x+l
L3: x:=x+1
if x=1 then goto L3
x:=x+1

if x=2 then goto L4

if x=3 then goto L2
L4: x:=x+1

if x=4 then goto L1

11. (TDDB44 only - 6p) Code Generation for RISC etc.

(a)

(1p) Explain the main similarity and the main difference between superscalar and VLIW
architectures from a compiler’s point of view. Which one is harder to generate code for,
and why?

(2p) What is branch prediction and when is it used? Give an example! Why is this
important for pipelined processors?

(3p) Given the following medium-level intermediate representation of a program frag-
ment: '

1: a=1.0

2: b=1.0

3% 6 3.0

4: e = 2.0

5: goto 9

6: b=a+b
7: a=c¢ / 2.0
8: c=a*e
9: e=¢ / 2.0

10: £ = (e > 0.1)
11: if f goto 6
12: d = 1.5 ¥ a

Identify the live ranges of program variables, and draw the live range interference graph
for the entire fragment. Assign registers to all live ranges by coloring the live range
interference graph. How many registers do you need at least, and why?

