WG Uy,
s %,

%

D,
“igs gt

LI F)
o My

&

Forsattsblad till skriftlig
tentamen vid Linkopings universitet

(fylls i av ansvarig)

Datum for tentamen 13-03-25
Sal TER4
Tid 08-12
Kurskod TDDB44
Provkod TEN{

Kursnamn/benimning

Kompilatorkonstruktion

Institution

IDA

Antal uppgifter som
ingdr i tentamen

10

Antal sidor pé tentamen
(inkl. forsittsbladet)

Jour/Kursansvarig

Jonas Wallgren

Telefon under skrivtid

- (i tentalokalens narhet)

Besoker salen ca kl.

Kursadministrator
(namn + tfnnr + mailadress)

Carita Lilja, 28 1463,
carli@ida.liu.se

Tillatna hjalpmedel

Se tentamens forsta sida

(“)Vl'igt
(exempel nir resultat kan ses pa

webben, betygsgriinser, visning,
ovriga salar tentan gir i m.m.)

Vilken typ av papper ska
anvindas, rutigt eller linjerat

Antal exemplar i pisen

2009-05-13/lisli

Tentamen /Exam
TDDB44 Kompilatorkonstruktion / Compiler Construction
TDDD55 Kompilatorer och interpretatorer /
Compilers and Interpreters

2013-03-25, 08.00 — 12.00

Hjalpmedel / Allowed material:

Engelsk ordbok / Dictionary from/to English to/from your native language

Minirdknare / Pocket calculator

General instructions:

Read all assignments carefully and completely before you begin
Note that not every problem is for all courses. Watch out for comments like “TDDD55 only”.
You may answer in Swedish or in English.

Write clearly — unreadable text will be ignored. Be precise in your statements — unprecise for-
mulations may lead to reduction of points. Motivate clearly all statements and reasoning. Explain
calculations and solution procedures.

The assignments are not ordered according to difficulty.
The exam is designed for 40 points (per course). You may thus plan 6 minutes per point.
Grading: U, 3, 4, 5 resp. Fx, C, B, A.

The preliminary threshold for passing (grade 3/C) is 20 points.

. (TDDD55 only - 6p) Formal Languages and Automata Theory

Consider the language L consisting of all strings w over the alphabet {0, 1} such that every
string contains 00 once or 11 once. Example of strings in the language: 1001, 0101101, 110,
100. Examples of strings not in the language: 0101, 1001011, 01011011, 000. (The last
example counts as two occurences of 00.)

(a) (2p) Construct a regular expression for L.
(b) (1.5p) Construct from the regular expression an NFA recognizing L.

(¢) (2.5p) Construct a DFA recognizing L, either by deriving it from the NFA or by con-
structing it directly.

(3p) Compiler Structure and Generators
Describe briefly what phases are found in a compiler. What is their purpose, how are they
connected, what is their input and output?

(2p) Symbol Table Management
Describe what the compiler — using a symbol table implemented as a hash table with chaining
and block scoped control — does in compiling a statically scoped, block structured language
when it handles:

(a) (0.5p) block entry

(b) (0.5p) block exit

(¢) (0.5p) a variable declaration

(d) (0.5p) a variable use.

(6p) Memory management

(a) (1p) What property of programming languages requires the use of activation records?
(b) (1p) What does an activation record contain?

(¢) (2p) What happens on the stack at function call and at function return?

(d) (2p) What are static and dynamic links? How are they used?

5. (6p) Top-Down Parsing
Given a grammar with nonterminals S, P, Q, and R, where S is the start symbol, and the
following productions:

1. S ::=P $ P
2. P ::=P £1Q
3 | Q
4. Q ::=Q # R
5 | R
6. R ::=0
7 |1

Assume that $, £, and # are operators.

(a) (1p) What is the associativity (right, left, none) of the operators?
(b) (1p) What is the precedence (relative priority) between the operators?

(¢) (2p) Can the grammar be used directly for a recursive-descent parser? Motivate your
answer. If not, rewrite the grammar so that the language it defines can be parsed using
the recursiuve-descent method.

(d) (2p) Write a recursive-descent parser to analyze the language defined by the grammar.

6. (TDDD55 only - 6p) LR parsing

(a) (3p) Use the SLR(1) tables below to show how the string a~b*a+b is parsed. You should
show, step by step, how stack, input data etc. are changed during the parsing. Start
state is 00, start symbol is S.

Grammar:
1. 8 ::=X + X
2. X ::=Y x X
3 | Y
4. Y =Y ° Z
5 | Z
6. Z ::= a
7 [b

Tables:

Action
State $ + % & a b S XY Z
00 * * * * S11 810 05 04 08 12
01 * * * * 511 S10 * 06 08 12
02 * * * * 511 S10 * 07 08 12
03 * * * * S11 S10 * *x * 09
04 * S01 * * * * * x k ok
05 A * * * * * * ok k%
06 R1 * * * * * x x ¥ %
o7 R2 R2 * * * * * x k ok
08 R3 R3 S02 303 = * * ok ok k
09 R4 R4 R4 R4 * * * ok ok k
10 R7 R7 R7 R7 * * * ok ok k
11 R6E R6 R6 RE * * ¥ ok ok ok
12 R5 R5 R5 Rb5 * * * ok x ok

(b) (3p) Explain the concept of conflict in LR parsing — what it is, how it could be handled.

7. (TDDB44 only - 6p) LR parsing
Given the following grammar G for strings over the alphabet a,b,4+,*.(,)with nonterminals E,
T, and F where E is the start symbol:

E ::=T | ExT
T ::=F | T+F
F::=a | b |(E)

Is the grammar G in SLR(1)? Is it LR(0)? Motivate with the LR-item sets. Construct the
characteristic LR-item NFA. the corresponding GOTO graph, the ACTION table and the
GOTO table. Show with tables and stack how the string a+b*b+(a*a) is parsed.

8. (5p) Syntax-Directed Translation
A loop statement that combines pre-test and post-test could be described like:

<doubletestloop> ::= WHILE <expr> DO <stmt> UNTIL <expr>;

If the first <expr> evaluates to true then the statement <stmt> is executed. If the second
<expr> then doesn’t evaluate to true the whole <doubletestloop> is executed again.

Write a syntax-directed translation scheme, with attributes and semantic rules, for translating
the <doubletest> statement to quadruples. Assume that the translation scheme is to be used

4

in a bottom-up parsing environment using a semantic stack. Use the grammar rule above as
a starting point, but it maybe has to be changed.

You are not allowed to define and use symbolic labels, i.e. all jumps should have absolute
quadruple addresses as their destinations. Explain all the attributes, functions, and instruc-
tions that you introduce. State all your assumptions.

9. (6p) Intermediate Code Generation
Given the following code segment in a Pascal-like language:

if =<y
then while x>z
x:=x-10
else y:=factorial(fibonacci(x)+1);

(a) (3p) Translate the code segment into an abtract syntax tree, quadruples, and postfix
code.

(b) (3p) Divide the following code inte basic blocks, draw a control flow graph, and show
as well as motivate the existing loop(s).

goto L2
Ll: x:=x+1
L2: x:=x+1
L3: x:=x+1

if x=1 then goto L1
if x=2 then goto L4

goto L&
L4: x:=x+1
L5: x:=x+1

if x=4 then goto L3

10. (TDDB44 only - 6p) Code Generation for RISC etc.

(a) (2p) Explain the main characteristics of CISC and RISC architectures, and their differ-
ences.

(b) (1.5p) Explain what register allocation and register assignment is (in the context of
code generation), and what the difference is.

(¢) (1.5p) Explain briefly the concept of software pipelining. Show it with a simple example.

(d) (1p) What is a live range? Explain the concept and show a simple example.

