Forsittsblad till skriftlig
tentamen vid Linkopings

310

universitet
Datum for tentamen 2019-06-05
Sal (1) TER2(8)
ITid |8-12
[Uth. kod TDDAG69
Modul [TENA
Utb. kodnamn/bendmning Data- och programstrukturer
Modulnamn/benimning Tentamen
Institution IDA
Antal uppgifter som ingar i 6
tentamen
Jour/Kursansvarig .
Ange vem som besdker salen Cyrille Berger

FI‘elefon under skrivtiden

m13-284023 eller 0767772870

[];es'(iker salen ca klockan

[ca. 1580 <7 — 7 =©

Kursadministrator/kontaktperson

(namn + tfnr + mailaddress)

Anna Grabska Eklund, ankn. 2362,
anna.grabska.eklund@liu.se

[Tillatna hjilpmedel

inga

l?)vrigt

-

‘Kntal exemplar i pasen

-




TDDAG9

Spring 2019

2019-06-05 8-12 Examiner: Cyrille Berger
Time Limit: 4 hours Tel: 076-777 28 70

This exam contains 4 pages (including this cover page) and 6 questions.
Total of points is 29p, the minimum for passing the exam is 14p, to get 2 four it is 19p and to get
a five it is 24p.

No assistance.

Good luck!

1. (6 points) Programming paradigms and concepts.

(a) (4 points) Draw a diagram showing the relation between the following programming
paradigms:

First-order functional programming
e Functional programming
e Logic programming
e Imperative programming
e Sequential object-oriented programming
e Declarative concurrent programming
The relation between those programming paradigms could be (not all of them are necesser-
ary usefull, and some might appear several times in the diagram):
e -Fprocedure
+closure
+-cell(state)
“+unification
“+thread
+search
e +port

The diagram should be a graph where the nodes are the programming paradigms and the
edges are the relations.

(b) (2 points) Which programming paradigm would you use for a programming language that
will primarly be used to query a database? Explain your choice.
2. (2 points) Write a recursive function that uses Newton’s method to calculate cube roots.

Given a guess gy, for the cube root of z an improved guess is given by:

ol =

T
nt1 = 3 ° ('9—2 +2- g'n.) (1)

When |gns1 — gn| < € the solution is found.
You can start with go = 2.

Only if, else, arithmetic operators and recursive calls are allowed.



TDDAG9 Page 2 of 4 2019-06-05 8-12

3. (8 points) Environment diagram.

=] o - w nN

=

10

11

12

13

Assume the expression below is evaluated in the order it is given.

function f(x)
{
return h(g) (x+1) (4, 5);
}
function g(x)
{
return function(y,z) { return z + (y * x); }

}
function h(f)

{

return function(x) { return f£(x+3); }

¥
£(5)

(a) (1 point) What will the result be? '

(b) (3 points) Draw a diagram that captures what is going on according to the environment
model of evaluation.

(c) (2 points) Mark the important structures and explain why, and in what order, they are
created and (can be) removed.

(d) (2 points) Use the diagram to show the result of the evaluation.

4. (3 points) Macros.

What is printed when executing the following code?

def skipper(f, n=None):
if n is None:
return lambda n : skipper(f, n)

else:
ifn% 2==0:
retval = £(n)
else:

retval = n * skipper(f, n-1)
return retval
calls = O

@skipper
def fact(n):
global calls
calls += 1
if n < 1:
return 1



TDDAG9 Page 3 of 4 2019-06-05 8-12
20 else:
21 return n * fact(n-1)

;s print(fact(4))

24 print(calls)

5. (3 points) Regular expressions.

(a) (1 point) Given the following regular expression:

1 /(ab+c)*/

‘Where + is one or more 0OCCUrence, ¥ i zero or more occurence and () is used for grouping,

Which of the following strings matches:

1 var a =
2 var b =
3 var ¢ =
4+ var d =
5 var e =

n abcll ;

n aC" ;

uu ;
Tabbbbc";
"abbbecabc"

(b) (2 points) Explain how the regular expression is executed, using a diagram.

6. (7 points) Concurrent Programming.

(a) (1 point) The following class defines an account:

1 class Account:

2 def __init__(self, balance):

3 self.balance = balance

4 def withdraw(self, amount):

5 nunygthdraw money from the account. """
6 if amount > self.balance:

7 return 'Insufficient funds'

8 self.balance = self.balance - amount

We want to use in a multi-threaded banking system:

1 account

= Account (100)

, thread.start_new_thread(Account. withdraw, (account, 20))
s thread.start_new_thread(Account _withdraw, (account, 25))
+ print(account .balance)

What is the expected result? Explain why with the current implementation the result
can be different.

(b) (2 points) In Python, you can create a mutex with mutex = threading.Lock() , acquire

the mutex with mutex.acquire() and release it with mutex.release() . Provide a

modification of the Account.withdraw function to guarantee that we obtain the correct

result




TDDAG69 Page 4 of 4 2019-06-05 8-12

(c) (2 points) A common mistake with mutex is to forget to unlock it. What solution(s)
would you implement in a programming language to help developers avoid this problem?

(d) (2 points) Why declarative concurrency (and streams) cannot be used to model client /server
applications?




