Forsattsblad till skriftlig
tentamen vid Linkopings

universitet
Datum for tentamen)2016-08-18
Sal (1) TER4
Tid 14-18
Kurskod TDDAG69
Provkod f TENA
Kursnamn/bensimning Data- och programstrukturer
Provnamn/benimning Tentamen
Institution _|IDA
Antal uppgifter som ingéar i 5
tentamen
xllggl\f;n];s:;l;lv‘ggggker salen Cyrille Berger B
|Telefon under skrivtiden H013 284023 or 076-777 28 70
[Besiiker salen ca klockan 1@
Kursadministrator/kontaktperson||Anna Grabska Eklund, ankn, 2362,
(namn + tfor + mailaddress) anna.grabska.eklund@liu.se
[Tillitna hjiilpmedel Jlinga] }
Ovrige | |
lAntal exemplar i pisen H |

TDDAG69

Spring 2016

2016-08-18 14-18 Examiner: Cyrille Berger
Time Limit: 4 hours Tel: 076-777 28 70

This exam contains 5 pages (including this cover page) and 5 questions.

Total of points is 30p, the minimum for passing the exam is 15p, to get a four it is 20p and to get
a five it is 25p.

No assistance.
Good luck!

[y

[N

1

3

. (4 points) Programming paradigms.

(a) (3 points) Explain the difference between imperative programming and object-oriented
programming.

(b) (1 point) Explain the main differences between weak typing and strong typing.

. (2 points) Rewrite the following code using a recursion:
def compute_value(n):
v =0
v2 =1
r =0
for 1 in range(0, n-1):
r =v + v2
v = v2
v2 =1
return r;

. (11 points) Intervals, data abstraction.

Alyssa P. Hacker is designing a system to help people solve engineering problems. One feature
she wants to provide in her system is the ability to manipulate inexact quantities (such as
measured parameters of physical devices) with known precision, so that when computations
are done with such approximate quantities the results will be numbers of known precision.

Alyssa’s idea is to implement interval arithmetic as a set of arithmetic operations for com-
bining ”intervals” (objects that represent the range of possible values of an inexact quantity).
The result of adding, subtracting, multiplying, or dividing two intervals is itself an interval,
representing the range of the result.

Alyssa postulates the existence of an abstract object called an ”interval” that has two end-
points: a lower bound and an upper bound. She also presumes that, given the endpoints
of an interval, she can construct the interval using the data constructor interval. Using the
constructor and selectors, she defines the following operations:

TDDAG9 Page 2 of 5 2016-08-18 14-18

. def str_interval(x):

2 wiiRetyrn o string representation of interval z.

3

4 >>> str_interval (interval (-1, 2))

5 -1 to 2’

6 mnn

7 return {0} to {1}’.format(lower_bound(x), upper_bound(x))

o def add_interval(x, y):

10 winReturn an interval that contains the sum of any value in

1 interval = and any value in interval y.

12

13 >>> str_interval (add_interval (interval (-1, 2), interval (4, 8)))
14 ’3 to 10’

15 nnn

16 lower = lower_bound(x) + lower_bound(y)

17 upper = upper_bound(x) + upper_bound (y)

18 return interval(lower, upper)

19
s def mul_interval(x, y):

21 wnngetyrn the interval that contains the product of any value
22 in = and any velue in Y.

23

24 >>> str_interval (mul_interval (interval (-1, 2), interval (4, 8)))
25 -8 to 16’

26 nun

27 pl = lower_bound(x) * lower_bound(y)

28 p2 = lower_bound(x) * upper_bound (y)

29 p3 = upper_bound(x) * lower_bound(y)

30 p4 = upper_bound(x) * upper_bound (y)

a1 return interval(min(pi, p2, p3, p4), max(pl, p2, p3, p4))

(a) (1 point) Alyssa’s program is incomplete because she has not specified the implementa-
tion of the interval abstraction. Define the constructor and selectors in terms of two-
element lists:

. def interval(a, b):
2 nunconstruct an interval from a to b."""
3 "xkx YOUR CODE HERE k"

s def lower_bound(x):
6 nnipotyrn the lower bound of interval z.
7 "sxk+ YOUR CODE HERE #¥*"

nin

o def upper_bound(x):
10 nnnpetyrn the upper bound of interval .
11 "xx* YOUR CODE HERE !

(b) (2 points) Alyssa needs an implementation of the division and she ask you to provide

mnn

TDDAG69 Page 3 of 5 2016-08-18 14-18

11

12

13

—
le]

1

one. She suggests that the division can be implemented, by multiplying by the reciprocal
of y. Ben Bitdiddle, an expert systems programmer, will be reviewing your code and wan
that you that it is not clear what it means to divide by an interval that spans zero. Make
sure to add an assert statement to your code to ensure that no such interval is used as a
divisor:
def div_interval(x, y):
wnngetyrn the interval that contains the quotient of any value in T
divided by any value in Y.

Division is implemented as the multiplication of © by the reciprocal
of y.

>>> str_interval (div_interval (interval (-1, 2), interval (4, 8)))
'-0.26 to 0.5’
>>> str_interval (div_interval (interval (4, 8), interval (=1, 2)))

AssertionError
Hyn

"xkx YOUR CODE HERE *x"

) (2 points) Using reasoning analogous to Alyssa’s, define a subtraction function for inter-

vals:

def sub_interval(x, y):
wnnReturn the interval that contains the difference between any value in T
and any vaelue in y.

>>> str_interval (sub_interval (interval (-1, 2), interval (4, 8)))
-9 to -2’

nun

"xx* YOUR CODE HERE "

(d) (3 points) After considerable work, Alyssa P. Hacker delivers her finished system. Several

years later, after she has forgotten all about it, she gets a frenzied call from an irate user,
Lem E. Tweakit. It seems that Lem has noticed that the formula for parallel resistors
can be written in two algebraically equivalent ways:
parl(rl, r2) = (rl * r2) / (ri + r2)
or
par2(ri, r2) =1 / (1/rl + 1/r2)
He has written the following two programs, each of which computes the parallel_resistors
formula differently:
def pari(rl, r2):

return div_interval(mul_interval(rl, r2), add_interval(ri, r2))

def par2(ri, r2):
one = interval(l, 1)
rep_rl = div_interval(one, rl)
rep_r2 = div_interval (one, r2)
return div_interval(one, add_interval(rep_rl, rep_r2))

TDDAG69 Page 4 of 5 2016-08-18 14-18

10

Lem complains that Alyssa’s program gives different answers for the two ways of com-
puting. This is a serious complaint:
These two intervals give different resulls for parallel resistors:

a = make_center_percent(l, 1)
b = make_center_percent(2, 1)
print (str_interval(pari(a, b)), ’!=’, str_interval(par2(a, b)))

Eva Lu Ator, another user, has also noticed the different intervals computed by different
but algebraically equivalent expressions. She says that the problem is multiple references
to the same interval.

The Multiple References Problem: a formula to compute with intervals using Alyssa’s
system will produce tighter error bounds if it can be written in such a form that no
variable that represents an uncertain number is repeated.

Thus, she says, par2 is a better program for parallel resistances than parl. Is she right?
Why?

(3 points) Write a function quadratic that returns the interval of all values f(t) such that
t is in the argument interval x and f(t) is a quadratic function
f(t) = a*¥t*t + b¥t +

Make sure that your implementation returns the smallest such interval, one that does not
suffer from the multiple references problem.
Hint: the derivative f'(t) = 2*a*t -+ b, and so the extreme point of the quadratic is
-b/(2*a):
def quadratic(x, a, b, ¢):

nnnpetyrn the interval that is the range of the quadratic defined by

coefficients a, b, and ¢, for domain interval .

>>> st'r;z'nterval(quadra,t'éc(interval(O, 2), -2, 3, -1))
-3 to 0.125° .

>>> str_interval (quadratic(interval (1, 3), 2, -3, 1))
0 to 10’

nunn

x4k YOUR CODE HERE sokk™

4. (8 points) Environment diagram.

Assume the expression below is evaluated in the order it is given.

TDDAG69 Page 5 of 5 2016-08-18 14-18

10

11

12

13

function f(x)

{

return h(g) (x+1) (4, 5);

¥

function g(x)

{

return function(y,z) { return z + (y * x); }

¥

function h(f)

{

return function(x) { return f(x+3); }

}

f(5)

(a)
(b)

(c)
()

(1 point) What will the result be?

(3 points) Draw a diagram that captures what is going on according to the environment
model of evaluation.

(2 points) Mark the important structures and explain why, and in what order, they are
created and (can be) removed.

(2 points) Use the diagram to show the result of the evaluation.

(5 points) Concurrent Programming.

(8)

1

(1 point) The following class defines an account:
class Account:
def __init__(self, balance):
self.balance = balance
def withdraw(self, amount):
nnnyithdraw money from the account.”""
if amount > self.balance:
return ’Insufficient funds’
self.balance = self.balance - amount
We want to use in a multi-threaded banking system:
account = Account(100)
thread.start_new_thread(Account.withdraw, (account, 20))
thread.start_new_thread(Account.withdraw, (account, 25))
print (account.balance)
What is the expected result? Explain why with the current implementation the result
can be different.

(2 points) In Python, you can create a mutex with mutex = threading.Lock() , acquire

the mutex with mutex.acquire() and release it with mutex.release() . Provide a

modification of the Account.withdraw function to guarantee that we obtain the correct
result

(2 points) A common mistake with mutex is to forget to unlock it. What solution(s)
would you implement in a programming language to help developers avoid this problem?

