i N

é{., Forsittsblad till skriftlig

¥

. tentamen vid Linkopings

universitet
Datum for tentamen 12015-08-20 -
Sal (1) IG35
Tid |14-18
Kurskod |TDDA69
tProvkod TENA ,
Kursnamn/benimning Data- och programstrukturer
Provnamn/bensimning |Tentamen
f‘lnstitution ;{IDA
Antal uppgifter som ingér i l6
tentamen ~ -
X;llgzl\f:n?:;;vg;gker salen Cyrille Berger
[Telefon under skrivtiden "[013 284023 or 076-777 28 70
]Besoker salen ca klockan []a
Kursadmlnlstrator/kontaktperson Anna Grabska Eklund ankn. 2362,
(namn + tfnr + mailaddress) - |anna.grabska. eklund@liu.se
!Tillfitha h] ﬁlpﬁle&el ;Imga

l(")vrigt '

flAntal exemplar i pasen I 7

TDDAG69

Spring 2015

2015-08-20 14-18 Examiner: Cyrille Berger
Time Limit: 4 hours Tel: 076-777 28 70

This exam contains 7 pages (including this cover page) and 6 questions.
Total of points is 39p, the minimum for passing the exam is 19p, to get a four it is 26p and to get
a five it is 32p.

No assistance.

Good luck!

1. (4 points) Programming paradigms.
(a) (3 points) Explain the difference between imperative programming and object-oriented
programming.

(b) (1 point) Explain the main differences between weak typing and strong typing.

2. (6 points) Rewrite the following code using a recursion:
(a) (2 points) Write a recursive function has_digit(k, d) that test if a number & contains the
digit d at least once.
Examples of use:
. >>> has_digit(2147, 7)

2 True

s >>> has_digit(2149, 7)

1+ False

s >>> has_digit(2747, 4)

¢ True

; >>> has_digit (123393, 4)
s False

(b) (4 points) Anonymous factorial
In general, to write a recursive function, the function is given a name using a function def-
inition (def name) or with an assignment statement. This allow to refer to the function
within its own body.
The recursive factorial function can be written as a single expression by using a conditional
expression.
. fact = lambda n: 1 if n == 1 else mul(n, fact(sub(n, 1))

This implementation relies on the fact that fact has a name, that is referred in the body
of the function fact.

In this question, you should define the fact (orial) function without giving it a name.
Write an expression that computes n factorial using only call expressions, conditional
expressions, and lambda expressions (no assignment or def statements). And you are not
allowed to use make_anonymous._factorial in your return expression. The sub and mul
functions from the operator module are the only built-in functions required to solve this
problem:

TDDAG9 Page 2 of 7 2015-08-20 14-18

1 from operator import sub, mul

s def make_anonymous_factorial():

4 ninRetyrn the value of an expression that computes factorial.
6 >>> make_anonymous_factorial () (5)

7 120

8 nnn

9 return ’YOUR_EXPRESSION_HERE’

Replace "'YOUR EXPRESSION_HERE' in the code above with your implementation of
a fully anonymous factorial.

3. (11 points) Intervals, data abstraction.

Alyssa P. Hacker is designing a system to help people solve engineering problems. One feature
she wants to provide in her system is the ability to manipulate inexact quantities (such as
measured parameters of physical devices) with known precision, so that when computations
are done with such approximate quantities the results will be numbers of known precision.

Alyssa’s idea is to implement interval arithmetic as a set of arithmetic operations for com-
bining ”intervals” (objects that represent the range of possible values of an inexact quantity).
The result of adding, subtracting, multiplying, or dividing two intervals is itself an interval,
representing the range of the result.

Alyssa postulates the existence of an abstract object called an ”interval” that has two end-
points: a lower bound and an upper bound. She also presumes that, given the endpoints
of an interval, she can construct the interval using the data constructor interval. Using the
constructor and selectors, she defines the following operations:

TDDAGY Page 3 of 7 2015-08-20 14-18

1 def str_interval(x):

2 nunpetyrn o string representation of interval T.

3

4 >>> str_interval (interval (=1, 2))

5 -1 to 2’

6 wnun

7 return ’{0} to {1}’ .format(lower_bound(x), upper_bound(x))

o def add_interval(x, y):

10 wnnReturn an interval that contains the sum of any value n

11 interval ¢ and any value in interval y.

12

13 >>> str_interval (add_interval (interval (-1, 2), interval (4, 8)))
14 ’3 to 10’

15 mnun

16 lower = lower_bound(x) + lower_bound(y)

17 upper = upper_bound(x) + upper_bound(y)

18 return interval(lower, upper)

20 def mul_interval(x, y):

21 wingeturn the interval that contains the product of any value
22 in aend any value in Y.

23

24 >>> str_interval (mul_interval (interval (-1, 2), interval (4, 8)))
25 -8 to 16’

26 mun

27 pl = lower_bound(x) * lower_bound(y)

28 p2 = lower_bound(x) * upper_bound(y)

29 p3 = upper_bound(x) * lower_bound(y)

30 p4 = upper_bound(x) * upper_bound(y)

a1 return interval(min(pi, p2, p3, p4), max(pl, p2, p3, p4))

(a) (1 point) Alyssa’s program is incomplete because she has not specified the implementa-
tion of the interval abstraction. Define the constructor and selectors in terms of two-
element lists:

. def interval(a, b):
2 nunconstruct an interval from a to b. """
3 "x*% YOUR CODE HERE skx"

s def lower_bound(x):
6 nnnpetyrn the lower bound of interval z."""
7 sk YOUR CODE HERE **"

o def upper_bound(x):
10 nunpotyrn the upper bound of interval .
1 "ss+ YOUR CODE HERE k%"

(b) (2 points) Alyssa needs an implementation of the division and she ask you to provide

mnun

TDDAG9 Page 4 of 7 2015-08-20 14-18

one. She suggests that the division can be implemented, by multiplying by the reciprocal
of y. Ben Bitdiddle, an expert systems programmer, will be reviewing your code and wan
that you that it is not clear what it means to divide by an interval that spans zero. Make
sure to add an assert statement to your code to ensure that no such interval is used as a

divisor:
. def div_interval(x, y):
2 nnipeturn the interval that conteins the quotient of any value in
3 divided by any value in Y.
4
5 Division is implemented as the multiplication of by the reciprocal
6 of .

8 >>> str_interval (div_interval (interval (-1, 2), interval (4, 8)))
9 ’-0.25 to 0.5’

10 >>> str_interval (div_interval (interval (4, 8), interval (-1, 2)))
11 AssertionError
12 mnin
13 "sxxk YOUR CODE HERE *kx"
(c) (2 points) Using reasoning analogous to Alyssa’s, define a subtraction function for inter-
vals:
. def sub_interval(x, y):
2 wingeturn the interval that contains the difference between any value in
3 and any vaelue in Y.
4
5 >>> str_interval (sub_interval (interval (-1, 2), interval (4, 8)))
6 -9 to -2°
7 nnn
8 txxx YOUR CODE HERE sxx"

(d) (3 points) After considerable work, Alyssa P. Hacker delivers her finished system. Several
years later, after she has forgotten all about it, she gets a frenzied call from an irate user,
Lem E. Tweakit. It seems that Lem has noticed that the formula for parallel resistors
can be written in two algebraically equivalent ways:

(r1 * r2) / (r1 + r2)

1 parl(ri, r2)
or

. par2(ril, r2) =1/ (1/rl + 1/12)
He has written the following two programs, each of which computes the parallel resistors
formula differently:

1 def pari(ri, r2):
2 return div_interval (mul_interval(rl, r2), add_interval(rl, r2))

s def par2(ri, r2):

5 one = interval(i, 1)
6 rep_ri = div_interval(one, rl)
7 rep_r2 = div_interval(one, r2)

8 return div_interval(one, add_interval(rep_rl, rep._r2))

TDDAGY Page 5 of 7 2015-08-20 14-18

10

Lem complains that Alyssa’s program gives different answers for the two ways of com-
puting. This is a serious complaint:

These two intervals give different results for parallel reststors:

a = make_center_percent(1l, 1)

b = make_center_percent(2, 1)

print (str_interval(pari(a, b)), ’!=’, str_interval(par2(a, b)))

Eva Lu Ator, another user, has also noticed the different intervals computed by different
but algebraically equivalent expressions. She says that the problem is multiple references
to the same interval.

The Multiple References Problem: a formula to compute with intervals using Alyssa’s
system will produce tighter error bounds if it can be written in such a form that no
variable that represents an uncertain number is repeated.

Thus, she says, par2 is a better program for parallel resistances than parl. Is she right?
Why?

(3 points) Write a function quadratic that returns the interval of all values f(t) such that
t is in the argument interval x and f(t) is a quadratic function
f(t) = axt¥t + bxt + ¢
Make sure that your implementation returns the smallest such interval, one that does not
suffer from the multiple references problem.
Hint: the derivative f'(t) = 2*a*t + b, and so the extreme point of the quadratic is
-b/(2%*a):
def quadratic(x, a, b, c):
"nipetyrn the interval that is the range of the quadratic defined by
coefficients a, b, and c, for domain interval z.

>>> str_interval (quadratic(interval (0, 2), -2, 3, -1))
-3 to 0.125°

>>> str_interval (quadratic(interval (1, 3), 2, -3, 1))
0 to 10°

nnn

"sx% YOUR CODE HERE ##*"

4. (8 points) Environment diagram.

Assume the expression below is evaluated in the order it is given.

TDDAG9 Page 6 of 7 2015-08-20 14-18

11

12

13

function f(x)
{
return h(g) (x+1) (4, 5);
}
function g(x)
{

return function(y,z) { return z + (y * x); }

}
function h(f)

{

return function(x) { return £(x+3); }

+
£(5)

(a) (1 point) What will the result be?

(b) (3 points) Draw a diagram that captures what is going on according to the environment
model of evaluation.

(¢) (2 points) Mark the important structures and explain why, and in what order, they are
created and (can be) removed.

(d) (2 points) Use the diagram to show the result of the evaluation.

(5 points) Stack machines.

In this question, we use a stack machine with the following instruction set:

e PUSH [constant_value]: push the constant on the stack

e POP [number]: pop a certain numbers of variables from the stack

e MUL: pop two arguments from the stack, push the result of multiplying them

e SUB: pop two arguments from the stack, push the result of subtracting them

e EQUAL: pop two arguments from the stack, push true if they are equal, or false otherwise
e LOAD [varname]: push the value of variable

e DCL [varname]: declare the variable

¢ STORE [varname]: get the value, store the result and push the value

e JMP [idz]: jump to execute instruction at the given index

o IFJMP [idz]: pop the value and if true jump to [idx]

e CALL [arguments/: pop the function object and call it with the given number of argu-
ments

e RET: return from a function call

(a) (2 points) Given the following factorial function:

TDDAGY Page 7 of 7 2015-08-20 14-18

1

var factorial = function(n)
{
if(n == 0) {
return 1
} else {
return n * factorial(n - 1);
}
+
Write the list of instructions that would execute the factorial function on a stack machine
with the provided instruction set.
For clarity, you should provide a number for each instruction in your answer, as shown in
the following example:
1. LOAD 'K’
2. PUSH %’
3. MUL
4, JMP 1
(1 point) Explain what happen during a CALL instruction and how the RET instruction
knows where to return.

(2 points) What is the maximum depth of the stack for a call to function(5) 7 List all
the values in the stack.

6. (5 points) Concurrent Programming.

()

1

(1 point) The following class defines an account:

class Account:
def __init__(self, balance):
self.balance = balance
def withdraw(self, amount):
wunygthdraw money from the account. """
if amount > self.balance:
return ’Insufficient funds’
self.balance = self.balance - amount

We want to use in a multi-threaded banking system:

account = Account(100)

thread.start_new_thread(Account.withdraw, (account, 20))
thread.start_new_thread(Account.withdraw, (account, 25))

print (account.balance)

What is the expected result? Explain why with the current implementation the result
can be different.

(2 points) In Python, you can create a mutex with mutex = threading.Lock() , acquire
the mutex with mutex.acquire() and release it with mutex.release() . Provide a
modification of the Account.withdraw function to guarantee that we obtain the correct
result

(2 points) A common mistake with mutex is to forget to unlock it. What solution(s)
would you implement in a programming language to help developers avoid this problem?

