é‘ Forsattsblad till skriftlig tentamen
~ vid Linkdpings Universitet

Datum for tentamen 2014-10-23

Sal (1) ! i 54

Tid 14-18

Kurskod TDDAG69

Provkod TENA

Kursnamn/benéimning Data- och programstrukturer
Provnamn/benimning Tentamen

Institution IDA

Antal uppgifter som ingar i 5

tentamen

Jour/Kursansvarig N .

Ange vem som besoker salen ed Rezine

Telefon under skrivtiden 013-281938 eller 0722-031978
Besoker salen ca klockan ja
Kursadmlmstrat(?r/kontaktperson Anna Grabska Eklund, ankn. 2362, anna.grabska.eklund @liu.se
(namn + tfor + mailaddress)

Tillatna hjilpmedel inga

Ovrigt

Antal exemplar i pasen

Exam in Data and Program Structure (TDDA69)

Department of Computer and Information Science
Linképing University

2014-10-23

Lecturers: Rezine A., Mérak Leffer A.

Time: 14 — —18

Directions:

6.

No documents, books or calculators are allowed

Write your answers clearly

Do not answer to more than one problem on each sheet of paper
Do not write on the back of the papers

You can answer in English or Swedish

Write your identifier on each sheet of paper

Fxaminer: Ahmed Rezine, 013 28 1938, 072 203 1978

You need about 25 points (out of maximum 50) to pass the exam.

Good Luck!

Problem A. Evaluation order and parameter passing (12 p)

1. (2p) What does it mean for a procedure to be strict in an argument?

2. (2p) Which of the normal and applicative orders correspond to ha-
ving procedures strict in all their arguments? explain.

3. (2p) How can memoization speed up lazy evaluation? what is the
parameter passing model called?

4. (4p) Write an expression that creates the stream of all natural num-
bers that are divisible by 3, i.e., 0,3,6,9,12 ...

5. (2p) Which of the procedures cons-stream, stream-car, stream-
cdr, force and delay should not be evaluated eagerly? explain.

Problem B. The environment model (18 p)
Assume the environment model of evaluation.

1. (2p) Use an an environment diagram example with several frames
and environments to explain the notions of environments, frames,
(shadowed) variables and variables’ values.

2. (6p) Assume we pass an expression and an environment env to eval.
Explain how the expression exp in (eval ’exp env) is evaluated, and
what is the result, using an environment diagram (if relevant):

(a) a self evaluating expression: e.g., (eval ’3 env)

(b) a variable name: e.g., (eval 'num env)

(c) a definition: e.g., (eval ’(define par 25) env)

(d) an assignment: e.g., (eval ’(set! par 25) env)

() a lambda expression: e.g., (eval ’(lambda (y z) (/ y z)) env)
(f) an application: e.g., (eval ’(bar t) env)

3. (2p) Explain the semantics of let and let* in Scheme. What is the
result of evaluating the code in Fig.17

(define s 1)

(let (s (%78 2))(t:(*x78:2)))
(*s.t))

(let* ({s. (% -5.2)) (£t (*xis:2)))
(+8.%))

Figur 1: Semantics of let and let™*

4. (6p) Assume we evaluate the expressions in Fig.2. What is the re-
sult of evaluating the last expression? Draw an environment diagram
capturing the most important structures and describe in which order
they are created.

(define (bar h .n) (let ((x 4)) (h (+ 1 x))))
(define (foo x) ‘(bar (lambda (y) (* x7y)) 4))

(foo 2)
Figur 2: static vs dynamic binding

5. (2p) What would be the value of the last expression in Fig.2 if the
interpreter instead made use of dynamic binding?

Problem C. Object oriented programming (4 p)

1. (3p) Describe the code in Fig.3 in terms of object oriented notions.

What object oriented programming properties can be captured when
using the environment model of evaluation?

2. (1p) Define the functions print-all, print-grade and set-grade! in
order to allow for a more functional style syntax (described in Fig.5)
as opposed to the current one (Fig.4):

(define (make-classroom ‘students)

(define (concat 1istl 1ist2)
{cond “{{null? 1isti) 1ist2)
(eise (cons {car 1istl) (concat (cdr 1ist1) 1ist2))3))

(define (find-student name)
(define (look-in ‘seq)
(cond ((nu1l? seq) (error "unregistred student’))
((eq? name (caar seq)) (1ist ?() (car seq) (cdri seq)))
(else (let ((found (look-in (cdr. seql)))
(1ist.(cons{car seq) {car found))
(cadr ‘found)
(caddr found))))))
(look-in “students))

(define . (set-grade! mname. grade)
{let “((found '(find-student name)))
(set!.students ‘(concat (car found)
{concat ' (1ist (1ist . name . grade))
{caddrfound))))))

(define :(print-grade mname) . (cadr (find-student name}))

(define '(dispatch 'm)
(cond :{(eq? m ?set-grade) set-gradel!)
((eq? m 2print-grade) print-grade)
((eq? 'm 2 print-all) (lambda () ‘students))
(else ‘(error *Unknown Tequest®: m))))
dispatch)

(define ‘class -(make-classroom 2((Anders '0)(Amy:0) (Erik ‘0))))

Figur 3: capturing object oriented concepts

({class print-alid) (print-all class)
> ((Anders 0) (Amy "0) "(Erik 0)) > ((Anders 0) (Amy:0) "(Erik 0})
({class.’set-grade) 5) (set-grade! ‘class ?2Amy 5)
((class ?print-grade) 2Amy) (print-grade ‘class ’Amy)
> (Amy '8) > {Amy ©5)
Figur 4: current syntax Figur 5: targeted syntax

Problem D. Logic Programming and Continuations (8 p)

1. (4p) Define in Prolog or in QLOG! a predicate, palindrome, that de-
cides whether a list is a plaindrome (i.e., a list 4; . .. %, is a plaindrome
iff Vk 1 1 < k < N8y = tp_g+1). For instance:

(palindrome ()) is true

1Recall the predicate (append u v w) that holds exactly when the concatenation uv
coincides with w can be defined in QLOG with the two rules (rule (append () ?v ?v))
and (rule (append (?u . 7v) 7y (7u . 7z)) (append ?v 7y 7z))

4

(palindrome (1)) is true
(subset (1 2 1)) is true
(subset (1 1 1 1)) is true
(subset (1 1 2 1)) is false
(subset (1 1 2)) is false

2. (4p) In the non-deterministic evaluator (amb-evaluator), the evalua-
tion can “fail”. This results in “backtracking” to an earlier choice point.
This was implemented using continuations.

(a) We added a new operation amb. Give an expression and its
possible evaluations to illustrate the usage of amb.

(b) Explain what a continuation is and how using them implies a
different evaluation model compared to the “usual one” (e.g. the
evaluation model implemented by %Scheme).

(c) How is “backtracking” implemented in the amb-evaluator? Ex-
plain the role of failure continuations and how to find the following
alternative at a previous choice point.

(d) When backtracking to an earlier choice point, what happens to
the side-effects that have already been executed? can they be
“undone”?

Problem E. Language extension (8 p)

We would like to implement a procedure “or” such that the evaluation of
the arguments stops as soon as one of them evaluates to true. Implement
the “or” procedure based on the metacircular evaluator (sketched in the
following). You can make use of your own primitives (just explain what
they do).

(define (eval ‘exp env)
(cond ((self-evaluating? exp) exp)

((variable? exp) (lookup-variable-value exp env))
((quoted? exp) (text-of-quotation exp))
((assignment? exp) (eval-assignment exp env))
((definition? exp) (eval-definition exp env))
((if? exp) (eval-if exp env)) :
((lambda? exp) (make-procedure (lambda-parameters exp)

(lambda-body ‘exp)
env))
((begin? exp) (eval-sequence (begin-actions exp) env))
((cond? . exp) (eval (cond->if 'exp) env))
((application? ‘exp)
(apply (eval. (operator ‘exp):env)
(list-of~values (operands exp) :env)))
(else (error :.u7))))

(define. (apply proc.args)
(cond ((primitive-procedure? proc)
(apply-primitive-procedure proc-args))
((compound-procedure? proc)
(eval-sequence (procedure-body proc)
(extend-environment
(procedure-parameters: proc)
args
(procedure-environment proc))))
(else (error .))))

(define (list-of-values -exps env)
(if (no-operands? 'exps)
>0
(cons (eval “(first-operand exps) env)
(list-of-values (rest-operands exps) env))))

(define (eval-if 'exp.env)
(if “(true? (eval (if-predicate exp) env))
(eval (if-consequent exp). env)
(eval “(if-alternative exp) ‘env)))

(define (eval-sequence exps env)
(cond “((last-exp? exps) (eval (first-exp exps) env))
(else: (eval (first-exp exps) env)
(eval-sequence (xrest-exps exps) . env))))

(define (eval-assignment 'exp env)
(set-variable-value! (assignment-variable exp)
(eval: (assignment-value exp) env)
env)
20k)

(define (eval-definition exp env)
(define-variable! (definition-variable exp)
(eval (definition-value ‘exp) ‘env)
env)
2.0k)

(define ‘(make-procedure: param body env)

