éé‘ Forsittsblad till skriftlig tentamen vid
-~ Linkopings Universitet

|

Datum for tentamen 12014-08-21
Sal (1)
Om tentan gér i flera salar ska du bifoga ett ; TER4

forsdttsblad till varje sal och ringa in vilken sal som
avses

Tid 114-18

Kurskod [TDDA69

Provkod | ITENA |
Kursnamn/benimning §Data- och programstrukturer
Provnamn/benimning [Tentamen |
Institution ‘ IDA

Antal uppgifter som ingar i ' 5

tentamen

Jour/Kursansvarig Ahmed Rezine

Ange vem som besoker salen

Telefon under skrivtiden |013-281938 eller 0722-

2031978
Besoker salen ca Kl. 17a

?Anna Grabska Eklund,
Kursadmlnlstrator/kontaktperson ankn. 2362,

(namn + tfor + mailaddress)

'anna grabska.eklund@liu. se |
Tilldtna hjidlpmedel {mga |

Ovrigt

Vilken typ av papper ska

anviandas, rutigt eller linjerat %Valfrltt

Antal exemplar i pasen

Exam in Data and Program Structure (TDDA69)

Department of Computer and Information Science
Linképing University

2014-08-21

Lecturers: Rezine A., Mérak Leffer A.

Time: 14 — —18

Directions:

6.

No documents, books or calculators are allowed

Write your answers clearly

Do not answer to more than one problem on each sheet of paper
Do not write on the back of the papers

You can answer in English or Swedish

Write your identifier on each sheet of paper

Examiner: Ahmed Reszine, 013 28 1938, 072 203 1978

You need about 25 points (out of maximum 50) to pass the exam.

Good Luck!

Problem A. Evaluation order and parameter passing (12 p)

1.

(2p) Give an expression whose evaluation differentiates the normal
and applicative orders of evaluation.

(2p) explain why debugging can be more difficult in case of lazy evalu-
ation as opposed to the usual call-by-value parameter passing model.

(2p) What is the difference between call-by-name and call-by-need?

(4p) Write an expression that creates the stream of all natural odd
numbers 1,3,5 ...

(2p) Which of the procedures cons-stream, stream-car, stream-
cdr, force and delay should not be evaluated eagerly? explain.

Problem B. The environment model (18 p)
Assume the environment model of evaluation.

1. (2p) Explain, using an example of an environment diagram, the

2.

notions of environments, frames, (shadowed) variables and variables’
values.

(6p) Assume we pass an expression and an environment env to eval.
Explain how the expression exp in (eval ’exp env) is evaluated using
an environment diagram (if relevant):

(a) a self evaluating expression: e.g., (eval 25 env)

(b) a variable name: e.g., (eval 'z env)

(c) a definition: e.g., (eval ’(define x 25) env)

(d) an assignment: e.g., (eval ’(set! y 25) env)

(e) a lambda expression: e.g., (eval '(lambda (y) (- y a)) env)

(f) an application: e.g., (eval ’(foo x) env)

3. (2p) Explain the semantics of let and let* in Scheme. What is the

result of evaluating the code in Fig.1?

(define s:0)

(let = ((s:(+:s5.5))
(t:(+81)))
(+.8 %))

(let* ((s (+:5:5))

(t 2 (+s:1)))
(+8°t))

Figur 1: Semantics of let and let™*

4. (6p) Assume we evaluate the expressions in Fig.2. What is the re-
sult of evaluating the last expression? Draw an environment diagram
capturing the most important structures and describe in which order
they are created.

(define (g h'n) (let ((x:85)) (h (+ mn:x))))
(define (f x). (g (lambda (y) (+:x.y)): 6))

(£:1)
Figur 2: static vs dynamic binding

5. (2p) What would be the value of the last expression in Fig.2 if the
interpreter instead made use of dynamic binding?

Problem C. Object oriented programming (4 p)

1. (3p) Describe the code in Fig.3 in terms of object oriented notions.

What object oriented programming properties can be captured when
using the environment model of evaluation?

2. (1p) Define the functions withdraw! and deposit! in order to allow
for a more functional style syntax (described in Fig.5) as opposed to
the current one (Fig.4):

(define (make-account . balance)
(define ‘(withdraw amount)
(if (>= balance ‘amount)
(begin (set! ‘balance (- balance amount))
"Insufficient funds"))
(define “(deposit ‘amount)
(set! ‘balance (+ balance amount))
balance)
(define (dispatch m)
(cond ({eq? m ?withdraw) withdraw)
((eq? m ’deposit) deposit)
(else (error "Unknown request” m))))
dispatch)

(define ‘acc (make-account 100))

((acc:?withdraw) 40)
=>"60

((acc ?deposit) 30)

balance)

=>.90
Figur 3: capturing object oriented concepts
(define . acc {(make-account 100)) (define ‘acc (make-account 100))
((acc ’withdraw) 40) (withdraw acc 40)
=>..60 =>.60
((acc . ?deposit) "30) (deposit acc:30)
=>790 =>.90
Figur 4: current syntax Figur 5: targeted syntax

Problem D. Logic Programming and Continuations (8 p)

1. (4p) Define in Prolog or in QLOG! a predicate, palindrome, that de-
cides whether a list is a plaindrome (i.e., a list 4 ... %, is a plaindrome

iff Vk: 1 <k < n.p =1,_x1). For instance:

(palindrome ()) is true

1Recall the predicate (append u v w) that holds exactly when the concatenation uv
coincides with w can be defined in QLOG with the two rules (rule (append () 7v 7v))

and (rule (append (?7u . 7v) ?y (7u. ?7z)) (append 7v 7y 72))

4

(palindrome (1)) is true
(subset (1 2 1)) is true
(subset (1 1 1 1)) is true
(subset (1 1 2 1)) is false
(subset (1 1 2)) is false

2. (4p) In the non-deterministic evaluator (amb-evaluator), the evalua-
tion can “fail”. This results in “backtracking” to an earlier choice point.
This was implemented using continuations.

(a) We added a new operation amb. Give an expression and its
possible evaluations to illustrate the usage of amb.

(b) Explain what a continuation is and how using them implies a
different evaluation model compared to the “usual one” (e.g. the
evaluation model implemented by %Scheme).

(c) How is “backtracking” implemented in the amb-evaluator? Ex-
plain the role of failure continuations and how to find the following
alternative at a previous choice point.

(d) When backtracking to an earlier choice point, what happens to
the side-effects that have already been executed? can they be
“undone”?

Problem E. Language extension (8 p)

We would like to implement a procedure “and” such that the evaluation of
the arguments stops as soon as one of them evaluates to false. Implement
the “and” procedure based on the metacircular evaluator (sketched in the
following). You can make use of your own primitives (just explain what
they do).

(define (eval ‘exp env)
(cond ({self-evaluating? 'exp) exp)

((variable? exp) (lookup-variable-value exp env))
((quoted? exp) (text-of-quotation exp))
((assignment? exp) (eval-assignment exp env))
((definition? exp) (eval-definition exp . env))
((if? ‘exp) . (eval-if ‘exp env))
((lambda? exp) (make-procedure (lambda-parameters.exp)

(lambda-body. exp)
env))
((vegin?.'exp) (eval-sequence (begin-actions exp) env))
((cond? exp) (eval (cond->if ‘exp) env))
((application? exp)
(apply (eval (operator exp) ‘env)
(1ist-of-values “(operands exp) env)))
(else. (error.:...:))))

(define (apply. proc. args)
(cond ((primitive-procedure? proc)
S (apply-primitive-procedure ‘proc -args))

({compound-procedure? proc)

(eval-sequence (procedure-body: proc)
(extend-environment
(procedure-parameters proc)
args
(procedure-environment proc))))

(else (error ... D))

(define (list-of-values exps env)
(if . (no-operands? exps)
10
(cons {eval (first-operand exps) env)
(list-of-values (rest-operands: exps) env))))

(define ‘(eval-if 'exp.‘env)
(if (true? (eval ‘(if-predicate exp) -env))
(eval (if-consequent ‘exp) env)
(eval (if-alternative 'exp)-env)))

(define (eval-sequence exps .env)
(cond ((last-exp? exps) (eval (first-exp -exps) env))
(else (eval (first-exp ‘exps) ‘env)
(eval-sequence (rest-exps exps) ~env))))

(define (eval-assignment exp-env)
(set-variable-value! (assignment-variable exp)
: (eval (assignment-~value exp)ienv)
env)
’0k)

(define (eval-definition exp: env)
(define-variable! (definition-variable exp)
(eval (definition-value exp) env)
env)
rok)

(define ‘(make-procedure param body env)

