TATA 57/TATA80 Transform Theory, 2015.08.20, 08-13 TEN 1.

Each question can give $0,1,2$ or 3 points. An answer is deemed to be good if it is marked with at least 2 points. For grade $n, n=3,4,5$, you need $3 n-1$ points and n good answers.
ERASMUS students will have their grades marked according to the scale: $\mathrm{A}=$ grade $5, \mathrm{~B}=$ grade $4, \mathrm{C}=$ grade 3.

You are allowed to use your own copies of Transformteori. Sammanfattning, Formler \mathfrak{G} Lexikon. No calculators are allowed.
Solutions to the examination can be found on the course homepage after the examination.

1) Solve the difference equation

$$
y(k+2)+2 y(k+1)-3 y(k)=4 \cdot 3^{k}
$$

with $y(0)=1, y(1)=1$.
2) Solve the equation

$$
y^{\prime \prime}(t)+y^{\prime}(t)+2 y(t)=6 t e^{-t}
$$

for $t \geq 0$ and with $y(0)=y^{\prime}(0)=0$.
3) The function $f(t)$ has period 2π and is defined as $f(t)=\left\{\begin{array}{ll}0 & -\pi \leq t<0 \\ \pi-t & 0 \leq t \leq \pi\end{array}\right.$.

Determine the Fourier series of $f(t)$ s. To which values does the series converge at $t=0, \pm \pi$? Using the Fourier series, calculate the value of the series

$$
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}
$$

Give reasons for your working.
4) Find all solutions $y(t) \in L^{1}(\mathbb{R})$ of the equation

$$
\int_{0}^{\infty} y^{\prime}(t-u) e^{-u} d u=-t e^{-2|t|}
$$

5) Determine all functions $y(t)$ with period 2π which satisfy the differential equation

$$
y^{\prime}(t)+3 y(t-\pi)=2 \sin 4 t
$$

Give reasons for your working.
6) Calculate the value of the integral

$$
\int_{-\infty}^{\infty} \frac{\sin \omega}{\omega\left(\omega^{2}+4\right)} d \omega
$$

7) Show that the series $f(x)=\sum_{k=1}^{\infty} \frac{1}{(k+x)^{2}}$ defines a continuous function for all $x \in[0,1]$. Calculate the value of $\int_{0}^{1} f(x) d x$. Give reasons for your working.
