MATEMATISK STATISTIK

Provkod: TEN2 08 June 2020, 08:00-12:00

Examiner: Zhenxia Liu (Tel: 013 281455).

Kurskod: TAMS65

a. You are allowed to use calculator, Formel och tabellsamling i matematisk statistic and TAMS65 - VT1: Notations and Formulas .

b. Scores rating: 7-9 points giving rate 3; 9.5-12 points giving rate 4; 12.5-15 points giving rate 5.

1 (3 points)

Two researchers Rose and Jack have independently estimated the proportion of colorblind p through a sample survey. Rose found 125 colorblind out of 2000 people, while Jack found 175 colorblind out of 3000 people.

- (1.1). (2p) Find a point estimate (punktskattning) \hat{p} of p using Maximum-Likelihood method (maximum-likelihood-metoden).
- (1.2). (1p) Check if the point estimate in (1.1) is unbiased (väntevärdesriktig).

2 (2 points)

There are two samples x_1, \ldots, x_{100} and y_1, \ldots, y_{100} from two independent distributions $N(\mu_1, 3)$ and $N(\mu_2, 4)$, respectively. Now we want to test hypothesis $\mu_1 \neq \mu_2$ with significance level (nivån) 1%.

- (2.1). (0.5p) Write out H_0 and H_1 .
- (2.2). (1.5p) Calculate type II error if we know the true value $\mu_1 = \mu_2 + 0.5$.

3 (3 points)

The lifetimes of 50 electron tubes were determined and the average of life time $\bar{x} = 38$ (unit: hour) was obtained. It is assumed that the lifetimes are independent and exponentially distributed with an unknown expected value μ .

- (3.1). (1.5p) Construct a two-sided confidence interval for μ with confidence level (konfidensgrad) 95 %.
- (3.2). (1.5p) Let p be the probability that the life time is longer than 80 hours. Construct a one-sided lower bound confidence interval for p with confidence level 95 %.

4 (4 points)

Researchers measured weights of three different types of apples. Results (unit: g) are:

Types								\bar{x}_i	s_i
1 Golden delicious	250	245	256	239	256			249.2	7.3
2 Gala	133	136	129	135	128	127	138	132.3	4.3
3 Fuji	154	149	148	157	149	162		153.2	5.6

Model: Assume these three samples are from three independent populations $N(\mu_i, \sigma)$, i = 1, 2, 3.

- (4.1). (2p) Construct a 95% confidence interval for μ_1 .
- (4.2). (2p) Is there any evidence showing that the weight of Golden delicious apple is more than 1.5 multiple of the weight of Gala apple with confidence level 99%, i.e. $\mu_1 > 1.5\mu_2$? Answer the question by constructing an appropriate confidence interval or test.

5 (3 points)

Let X be number of calls at a service center between 10:00-11:00 per day. For 100 days, we have the following observations

Number of calls	0	1	2	3	4	5	6
Number of days	10	13	25	25	$\overline{14}$	9	4

Test if the number of calls can be assumed as Poisson distribution, i.e.

$$H_0: X \sim Po(\mu)$$
 versus $H_1: X \nsim Po(\mu)$

Choose significance level 5%.

TAMS65 -VT1: Notations and Formulas

— by Zhenxia Liu

1 Repetition of Probability Theory

1.1 Basic notations and formulas

X: random variable (stokastiska variabel);

Discrete random variable (diskret stokastisk variabel): pmf = Probability mass function (sannolikhetsfunktion), $p_X(k) = p(k) \coloneqq P(X = k).$

Continuous random variable(kontinuerlig stokastisk variabel): pdf = Probability density function(täthesfunktion), $f_X(x) = f(x)$.

 ${\rm cdf} = {\rm Cumulative} \ {\rm distribution} \ {\rm function} ({\rm f\"{o}rdelningsfunktion}) :$

$$F(x) := P(X \le x) = \left\{ \begin{array}{ll} \sum_{k \le x} p_X(k) & \text{discrete r.v.} \\ \int_{-\infty}^x f_X(t) dt & \text{continuous r.v.} \end{array} \right.$$

 ${\bf Expectation/mean/expected\ value(v\"{a}ntev\"{a}rde)}$

$$\mu = E(X) = \begin{cases} \sum k p_X(k), & \text{if } X \text{ is discrete,} \\ \int_{-\infty}^{\infty} x f_X(x) dx, & \text{if } X \text{ is continuous;} \end{cases}$$

If Y = g(X), then

$$E(Y) = \begin{cases} \sum_k g(k) p_X(k), & \text{if X is discrete,} \\ \int_{-\infty}^\infty g(x) f_X(x) dx, & \text{if X is continuous;} \end{cases}$$

Variance(Varians): $\sigma^2 = V(X) = var(X) = E((X - \mu)^2) = E(X^2) - (E(X))^2$;

Standard deviation(Standardavvikelse): $\sigma = D(X) = \sqrt{V(X)}$;

If $X_1, ..., X_n$ are r.v.s and $c_0, c_1, ..., c_n$ are constants, then

$$E(c_0 + c_1X_1 + ... + c_nX_n) = c_0 + c_1E(X_1) + ... + c_nE(X_n)$$

If $X_1, ..., X_n$ are independent (oberoende), then

$$V(c_0 + c_1 X_1 + \ldots + c_n X_n) = \sum_{i=1}^{n} c_i^2 V(X_i)$$

If X and Y are r.v.s and a, b, c are constants, then

$$V\left(aX+bY+c\right)=a^{2}V(X)+2ab\cdot cov(X,Y)+b^{2}V(Y)$$

1/8

1.2 Several discrete r.v.

Binomial distribution (Binomial fördelning) $X \sim Bin(n,p)$

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k} \text{ for } k = 0, 1, \dots, n$$

$$E(X) = np \quad V(X) = np(1-p)$$

Poisson distribution(Poissonfördelning) $X \sim Po(\lambda)$

$$p_X(k) = \frac{\mu^k}{k!} e^{-\mu}, \quad k = 0, 1, 2, \dots$$

$$E(X) = \mu \quad V(X) = \mu$$

Hypergeometric distribution (Hypergeometrisk fördelning) $X \sim Hyp(N,n,p)$

$$p_X(x) = \frac{\binom{Np}{x}\binom{N(1-p)}{n-x}}{\binom{N}{n}} \quad \text{for} \quad 0 \le x \le Np \quad \text{and} \quad 0 \le n-x \le N(1-p)$$

$$E(X) = np$$
 $V(X) = \frac{N-n}{N-1}np(1-p)$

1.3 Several continuous r.v.

Normal distribution(normalfördelning): $X \sim N(\mu, \sigma)$

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Standard normal distribution $Z \sim N(0,1) \ \phi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$.

If
$$X \sim N(\mu, \sigma)$$
, then $Y = \frac{X - \mu}{\sigma} \sim N(0, 1)$.

If $X_1,...,X_n$ are **independent(oberoende)** and each $X_i \sim N(\mu_i,\sigma_i)$, for any constants $d,c_1,...,c_n$, then we have

$$d + \sum_{i=1}^n c_i X_i \sim N \left(d + \sum_{i=1}^n c_i \mu_i, \sqrt{\sum_{i=1}^n c_i^2 \sigma_i^2} \right)$$

Exponential distribution (Exponentialfördelning) $X \sim Exp(\frac{1}{\mu})$

$$f_X(x) = \frac{1}{\mu} e^{-\frac{x}{\mu}} \text{ for } x > 0$$

$$E(X) = \mu \quad V(X) = \mu^2$$

Uniform distribution(Likformigfördelning) $X \sim U(a,b)$ or $X \sim Re(a,b)$

$$f_X(x) = \frac{1}{b-a}$$
 for $a < x < b$

$$E(X) = \frac{a+b}{2}, \quad V(X) = \frac{(b-a)^2}{12}.$$

1.4 Central Limit Theorem (CLT)(Centrala gränsvärdessatsen)

Let $\{X_1, X_2, \dots, X_n\}$ be a sequence of independent and identically distributed random variables with expectation $E(X) = \mu$ and variance $V(X) = \sigma^2$. Then for large $n \ge 30$,

$$\frac{X - \mu}{\sigma / \sqrt{n}} \approx N(0, 1). \tag{1}$$

- $\bullet \ \bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}.$
- \bullet If the population is normal, then CLT holds for any n.
- Understand that $\mu = E(\bar{X})$ and $(\sigma/\sqrt{n})^2 = V(\bar{X})$.

2 Statistics Theory

2.1 Basics in Statistics

Population X;

Random sample (slumpmässigt stickprov): X_1, \ldots, X_n are independent and have the same distribution as the population X. Before observe/measure, X_1, \ldots, X_n are random variables, and after observe/measure, we use x_1, \ldots, x_n which are numbers (not random variables);

Observations (observationer): x_1, \ldots, x_n

Sample mean (stickprovsmedelvärde): Before observe/measure, $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, and after observe/measure, $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$;

Sample variance (Stickprovsvarians): Before observe/measure, $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$, and after observe/measure, $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{X})^2$;

Sample standard deviation (Stickprovsstandardavvikelse): Before observe/measure, $S=\sqrt{S^2}$, and after observe/measure, $s=\sqrt{s^2}$;

2.2 Point estimation

For a population X with an unknown parameter θ , and a random sample $\{X_1, \ldots, X_n\}$:

Point Estimator(stickprovsvariabeln): $\hat{\Theta} = f(X_1, \dots, X_n)$, a random variable;

Point Estimate (punktskattning): $\hat{\theta} = f(x_1, ..., x_n)$, a number;

Unbiased(Väntevärdesriktig): $E(\hat{\Theta}) = \theta$;

Effective (Effektiv): Two estimators $\hat{\Theta}_1$ and $\hat{\Theta}_2$ are unbiased, we say that $\hat{\Theta}_1$ is more effective than $\hat{\Theta}_2$ if $V(\hat{\Theta}_1) < V(\hat{\Theta}_2)$;

Consistent (Konsistent): A point estimator $\hat{\Theta} = g(X_1, \dots, X_n)$ is consistent if

$$\lim_{n\to\infty} P(|\hat{\Theta}-\theta|>\varepsilon)=0, \text{ for any constant } \varepsilon>0.$$

(This is called "convergence in probability").

Theorem: If $E(\hat{\Theta}) = \theta$ and $\lim_{n \to \infty} V(\hat{\Theta}) = 0$, then $\hat{\Theta}$ is consistent.

Method of moments (Momentmetoden)-MM: # of equations depends on # of unknown parameters,

$$E(X) = \bar{x}, \quad E(X^2) = \frac{1}{n} \sum_{i=1}^{n} x_i^2, \quad E(X^3) = \frac{1}{n} \sum_{i=1}^{n} x_i^3, \quad \dots$$

Least square method (minsta-kvadrat-metoden)-LSM: The least square estimate θ is the one minimizing

$$Q(\theta) = \sum_{i=1}^{n} (x_i - E(X))^2.$$

Maximum-likelihood method (Maximum-likelihood-metoden)-ML: The maximum-likelihood point estimate $\hat{\theta}$ is the one maximizing the likelihood function

$$L(\theta) = \begin{cases} \prod_{i=1}^{n} f(x_i; \theta), & \text{if } X \text{ is continuous.} \\ \prod_{i=1}^{n} p(x_i; \theta), & \text{if } X \text{ is discrete.} \end{cases}$$

Remark 1 on ML: In general, it is easier/better to maximize $\ln L(\theta)$

Remark 2 on ML: If there are several random samples (say m) from independent populations with a same unknown parameter θ , then the maximum-likelihood estimate θ is the one maximizing the likelihood function defined as $L(\theta) = L_1(\theta) \dots L_m(\theta)$, where $L_i(\theta)$ is the likelihood function from the i-th sample.

Estimates of population mean μ : point estimator $\hat{M} = \bar{X}$ and point estimate $\hat{\mu} = \bar{x}$.

Estimates of population variance σ^2 :

• If there is only one random sample,

If μ is known (känt), point estimator $\hat{\Sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$ and point estimate $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$.

If μ is unknown (okänt), point estimator $\hat{\Sigma}^2 = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ and point estimate $\hat{\sigma}^2 = s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$ Sample variance.

• If there are m samples from independent populations with unknown means and a same variance σ^2 , then $(n_1 - 1)s_1^2 + \ldots + (n_m - 1)s_2^2$

$$\hat{\sigma}^2 = s^2 = \frac{(n_1 - 1)s_1^2 + \ldots + (n_m - 1)s_m^2}{(n_1 - 1) + \ldots + (n_m - 1)} \qquad \text{(unbiased)}$$

where n_i is the sample size of the *i*-th sample, and s_i^2 is the sample variance of the *i*-th sample.

Note that: MM and ML give a point estimate of σ^2 as follows

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \qquad (\text{NOT unbiased}).$$

An adjusted/corrected(korrigerade) point estimate would be the sample variance

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
 (unbiased).

Sample standard deviation $s = \sqrt{s^2}$ and $S = \sqrt{S^2}$.

Standard error(medelfelet) of a point estimate $\hat{\theta}$: $d(\hat{\theta})$ is an estimation of the standard deviation $D(\hat{\Theta})$.

- 2.3 Interval estimation Confidence interval(Konfidensintervall) -CI
- **2.3.1** One random sample $\{X_1, \ldots, X_n\}$ from $N(\mu, \sigma)$

CI for μ

the sampling distribution is
$$\begin{cases} \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1), \text{ if } \sigma \text{ is known} \\ \frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t(n-1), \text{ if } \sigma \text{ is unknown} \end{cases}$$

CI for σ^2 , the sampling distribution is $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$

Note:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$
.

6/8

5/8

1.3.2 Two random samples $\{X_1,\ldots,X_{n_1}\}$ and $\{Y_1,\ldots,Y_{n_2}\}$ from independent distributions $N(\mu_1,\sigma_1)$ and $N(\mu_2,\sigma_2)$, respectively.

$$\begin{cases} \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2^2}}} \sim N(0, 1), & \text{if } \sigma_1 \text{ and } \sigma_2 \text{ are known;} \\ \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2^2}} \sim t(n_1 + n_2 - 2), & \text{if } \sigma_1 = \sigma_2 = \sigma \text{ is unknown;} \\ \frac{S}{S} \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \sim t(f), & \text{if } \sigma_1 \neq \sigma_2 \text{ both are unknown;} \\ \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2^2}} \approx t(f), & \text{if } \sigma_1 \neq \sigma_2 \text{ both are unknown;} \\ \left[\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{n_1}{n_1} + \frac{n_2}{n_2^2}}} \approx t(f), & \text{if } \sigma_1 \neq \sigma_2 \text{ both are unknown;} \\ \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{n_1}{n_1} + \frac{n_2}{n_2^2}}} \approx t(f), & \text{if } \sigma_1 \neq \sigma_2 \text{ both are unknown;} \\ \left[\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{n_1}{n_1} + \frac{n_2}{n_2^2}}} \right] \end{cases}$$

CI for σ^2 : If $\sigma_1 = \sigma_2 = \sigma$, the distribution function is $\frac{(n_1 + n_2 - 2)S^2}{\sigma^2} \sim \chi^2(n_1 + n_2 - 2)$.

Note that: Unknown σ^2 can be estimated by the samples variance $s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$.

Remark: The idea of using **sampling distribution** to find confidence intervals is very important. There are a lot more different confidence intervals besides above. For instance, we consider two independent samples: $\{X_1, \ldots, X_{n_1}\}$ from $N(\mu_1, \sigma_1)$ and $\{Y_1, \ldots, Y_{n_2}\}$ from $N(\mu_2, \sigma_2)$. In this case, we can easily prove that

$$c_1 \bar{X} + c_2 \bar{Y} \sim N \left(c_1 \mu_1 + c_2 \mu_2, \quad \sqrt{\frac{c_1^2 \sigma_1^2}{n_1} + \frac{c_2^2 \sigma_2^2}{n_2}} \right).$$

Then CI for $c_1\mu_1 + c_2\mu_2$, the following sampling distribution is

- If σ_1 and σ_2 are known, $\frac{(c_1X + c_2Y) (c_1\mu_1 + c_2\mu_2)}{\sqrt{\frac{c_1^2\sigma_1^2}{n_1} + \frac{c_2^2\sigma_2^2}{n_2}}} \sim N(0, 1).$
- If $\sigma_1 = \sigma_2 = \sigma$ is unknown, $\frac{(c_1 \bar{X} + c_2 \bar{Y}) (c_1 \mu_1 + c_2 \mu_2)}{S\sqrt{\frac{c_1^2}{n_1} + \frac{c_2^2}{n_2^2}}} \sim t(n_1 + n_2 2).$
- **2.3.3** Confidence intervals from More random samples from independent $N(\mu_i, \sigma_i), i = 1, \dots, n$.

Assume that θ is a linear combination of μ_i .

CI for θ , the sampling distribution is

• If σ_i is known

$$\frac{\widehat{\Theta} - \theta}{D(\widehat{\Theta})} \sim N(0, 1)$$

• If $\sigma_1 = \ldots = \sigma_n = \sigma$ is unknown,

$$\frac{\widehat{\Theta} - \theta}{\widehat{D}(\widehat{\Theta})} \sim t(f), \text{ where } \widehat{D} = S \cdot constant$$

CI for σ^2 , the sampling distribution is

$$\frac{fS^2}{\sigma^2} \sim \chi^2(f)$$

Note: f =degrees of freedom for S^2 .

2.3.4 Confidence intervals from normal approximations.

$$X \sim Bin(n,p): \ \ \text{Sampling distribution} \frac{\hat{P} - p}{\sqrt{\frac{p(1-p)}{n}}} \approx N(0,1) \ \text{for} \ n\hat{p}(1-\hat{p}) > 10.$$

$$X \sim Po(\mu): \ \mbox{Sampling distribution} \frac{X - \mu}{\sqrt{\frac{\mu}{n}}} \approx N(0,1) \ \mbox{for} \ n \hat{\mu} > 15.$$

$$X \sim Hyp(N,n,p): \ \text{Sampling distribution} \frac{\hat{P}-p}{\sqrt{\frac{N-n}{N-1}\frac{p(1-p)}{n}}} \approx N(0,1) \text{ for } \frac{n}{N} \leq 0.1 \text{ and } n\hat{p}(1-\hat{p}) \geq 10.$$

$$X \sim Exp(\frac{1}{\mu}): \ \ \text{Sampling distribution} \ \frac{\bar{X} - \mu}{\mu/\sqrt{n}} \approx N(0,1) \ \text{for} \ n \geq 30$$

Remark: Again there are more confidence intervals besides above. For instance, we consider two independent samples: X from $Bin(n_1, p_1)$ and Y from $Bin(n_2, p_2)$, with unknown p_1 and p_2 . As we know

$$\hat{P}_1 \approx N\left(p_1, \sqrt{\frac{p_1(1-p_1)}{n_1}}\right) \text{ and } \hat{P}_2 \approx N\left(p_2, \sqrt{\frac{p_2(1-p_2)}{n_2}}\right),$$

Therefore, to get CI for $p_1 - p_2$, we consider this sampling distribution $\frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1(1-p_1)}{p_1(1-p_2)}}} \approx N(0,1)$ for $n_1\hat{p}_1(1-\hat{p}_1) > 10$ and $n_2\hat{p}_2(1-\hat{p}_2) > 10$.

2.3.5 Confidence intervals from the ratio of two population variances σ_2^2/σ_1^2

Suppose there are two samples $\{X_1,\dots,X_{n_1}\}$ and $\{Y_1,\dots,Y_{n_2}\}$ from independent $N(\mu_1,\sigma_1)$ and $N(\mu_2,\sigma_2)$, respectively. Then $\frac{(n_1-1)S_1^2}{\sigma_1^2} \sim \chi^2(n_1-1)$ and $\frac{(n_2-1)S_2^2}{\sigma_2^2} \sim \chi^2(n_2-1)$, the sampling distribution is

$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1).$$

7/8

2.3.6 Large sample size $(n \ge 30$, population may be completely unknown).

If there is no information about the population(s), then we can apply Central Limit Theorem (usually with a large sample $n \geq 30$) to get an approximated normal distributions. Here are two examples:

Example 1: Let $\{X_1, \dots, X_n\}$, $n \geq 30$, be a random sample from an unknown population, then (no matter what distribution the population is)

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \approx N(0, 1).$$

Example 2: Let $\{X_1, \ldots, X_{n_1}\}$, $n_1 \geq 30$, be a random sample from an unknown population, and $\{Y_1, \ldots, Y_{n_2}\}$, $n_2 \geq 30$, be a random sample from another unknown population which is independent from the first population, then (no matter what distributions the populations are)

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \approx N(0, 1).$$

Hypothesis testing(hypotesprövning) -HT

3.1 One sample and the general theory of hypothesis testing

Population X with an unknown parameter θ ,

$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta < \theta_0$, or $\theta > \theta_0$, or $\theta \neq \theta_0$

HT-1 Population X is not Normal (approximation) distribution and has Only one observation x.

HT-2 All types of populations for Confidence interval.

don't reject H_0	reject H_0	
1-lpha	(type I error or significance level) α	H_0 is true
(type II error) $\beta(\theta_1) = 1 - h(\theta_1)$	(power) $h(\theta_1)$	H_0 is false and $\theta = \theta_1$

Find sampling distributions from section 2.3 Interval estimation.

TS := "test statistic"; and C := "rejection region/critical region".

$$TS \in C \Leftrightarrow \text{reject } H_0$$

$$p$$
-value $< \alpha \Leftrightarrow \text{reject } H_0$

4 Basic χ^2 -test

4.1 Test on distribution

 $\begin{cases} H_0: \ X \sim \ {\rm distribution} \ ({\rm with \ or \ without \ unknown \ parameters}); \\ H_1: \ X \sim \ {\rm distribution} \end{cases}$

The sampling distribution is

$$\sum_{i=1}^k \frac{(N_i - np_i)^2}{np_i} \sim \chi^2(k-1 - \# \text{of unknown parameters})$$

for $\sum p_i = 1$ and $np_i > 5$.

4.2 Test of Independence / Homogeneity

Suppose we have a data with r rows and k columns,

 $\begin{cases} H_0: & \text{the grouping of } r \text{ rows and the grouping of } k \text{ columns are independent;} \\ H_1: & \text{the grouping of } r \text{ rows and the grouping of } k \text{ columns are not independent.} \end{cases}$

Equivalently,

 $\begin{cases} H_0: & \text{the distributions of } r \text{ rows in each column are the same} \\ H_1: & \text{the distributions of } r \text{ rows in each column are Not the same} \end{cases}$

Then the sampling distribution

$$\sum_{j=1}^{k} \sum_{i=1}^{r} \frac{(N_{ij} - np_{ij})^2}{np_{ij}} \sim \chi^2((r-1)(k-1))$$

for $np_{ij} > 5$, where $p_{ij} = p_i \cdot q_j$ are the theoretical probabilities.