Examination Multivariate Statistical Methods

Linköpings Universitet, IDA, Statistik

Course code and name:	732A97 Multivariate Statistical Methods
Date:	2018/01/09, 8-12
Examinator:	Krzysztof Bartoszek phone 013-281 885
Allowed aids:	Pocket calculator
	Table with common formulae and moment generating functions
	(distributed with the exam)
	Table of integrals (distributed with the exam)
	Table with distributions from Appendix in the course book
	(distributed with the exam)
	One double sided A4 page with own hand written notes
Grades:	$\mathrm{A}=[19-\infty)$ points
	$\mathrm{B}=[17-19)$ points
	$\mathrm{C}=[14-17)$ points
	$\mathrm{D}=[12-14)$ points
	$\mathrm{E}=[10-12)$ points
	$\mathrm{F}=[0-10)$ points
	Write clear and concise answers to the questions.

Instructions: Write clear and concise answers to the questions.

Problem 1 (6p)

You are given the data matrix

$$
\mathbf{X}=\left[\begin{array}{ll}
1 & 1 \\
2 & 1 \\
1 & 2
\end{array}\right]
$$

(a 1p) Calculate, \mathbf{S}, the sample covariance matrix of \mathbf{X}.
(b 2p) Calculate the eigenvalues and eigenvectors of \mathbf{S}.
(c 1p) Calculate the total and generalized variances associated with \mathbf{S}.
(d1p) What percantage of the variance do each of the principle components explain?
(e 1p) Provide an interpretation of the principal components.

Problem 2 (4p)

Let \mathbf{A} and \mathbf{B} be two square matrices of the same dimensions. Assume that both are invertible, i.e. \mathbf{A}^{-1} and \mathbf{B}^{-1} exist.
(a 2 p) Show that $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$.
(b 2 p) Assume furthermore that \mathbf{A} is eigendecomposable. Represent \mathbf{A}^{-1} in terms of \mathbf{A} 's eigendecomposition and prove that this representation is indeed correct.

Problem 3 (4p)

Let the random vector $\mathbb{R}^{4} \ni \vec{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)^{T}$ be normally distributed with expectation vector $\vec{\mu}=(3,4,0,2)^{T}$ and covariance matrix

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cccc}
1 & -2 & 0 & 1 \\
-2 & 8 & 3 & 0 \\
0 & 3 & 10 & -3 \\
1 & 0 & -3 & 10
\end{array}\right]
$$

(a 2 p) Write all pairs of variables that are independent. Justify your choice.
(b 2 p) Is $3 X_{1}+X_{2}$ correlated with $2\left(X_{3}+X_{4}\right)$? Justify your answer.

Problem 4 (6p)

You are provided with the following distributional results.

- Let $\mathbb{R}^{p} \ni \vec{X} \sim \mathcal{N}(\vec{\mu}, \boldsymbol{\Sigma})$, then

$$
(\vec{X}-\vec{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\vec{X}-\vec{\mu}) \sim \chi_{p}^{2}
$$

- Let $\mathbb{R}^{p} \ni \bar{x}$ be the sample mean of n normal observations and \mathbf{S} the sample covariance. If the population expectation is $\vec{\mu}$, then

$$
(\bar{x}-\vec{\mu})^{T}\left(\frac{1}{n} \mathbf{S}\right)^{-1}(\bar{x}-\vec{\mu}) \sim \frac{(n-1) p}{n-p} F_{p, n-p}
$$

- If we have two independent samples, both of dimension p, first of size n_{1} from $\mathcal{N}\left(\vec{\mu}, \boldsymbol{\Sigma}_{1}\right)$ and second of sizse n_{2} from $\mathcal{N}\left(\vec{\mu}, \boldsymbol{\Sigma}_{2}\right)$, then denoting by $\bar{x}_{1}, \mathbf{S}_{1}$ and $\bar{x}_{2}, \mathbf{S}_{2}$ the respective sample averages and covariances

$$
\left(\bar{x}_{1}-\bar{x}_{2}\right)^{T}\left(\frac{1}{n_{1}} \boldsymbol{\Sigma}_{1}+\frac{1}{n_{2}} \boldsymbol{\Sigma}_{2}\right)^{-1}\left(\bar{x}_{1}-\bar{x}_{2}\right) \sim \chi_{p}^{2}
$$

- if $\boldsymbol{\Sigma}_{1}=\boldsymbol{\Sigma}_{2}$

$$
\left(\bar{x}_{1}-\bar{x}_{2}\right)^{T}\left(\frac{n_{1}-1}{n_{1}+n_{2}-2} \mathbf{S}_{1}+\frac{n_{2}-1}{n_{1}+n_{2}-2} \mathbf{S}_{2}\right)^{-1}\left(\bar{x}_{1}-\bar{x}_{2}\right) \sim \frac{\left(n_{1}+n_{2}-2\right) p}{n_{1}+n_{2}-p-1} F_{p, n_{1}+n_{2}-p-1}
$$

- if $\boldsymbol{\Sigma}_{\mathbf{1}} \neq \boldsymbol{\Sigma}_{2}$ and n is large, then approximately

$$
\left(\bar{x}_{1}-\bar{x}_{2}\right)^{T}\left(\frac{1}{n_{1}} \mathbf{S}_{1}+\frac{1}{n_{2}} \mathbf{S}_{2}\right)^{-1}\left(\bar{x}_{1}-\bar{x}_{2}\right) \sim \chi_{p}^{2} .
$$

In a medical study the content of two different substances in the blood are studied. The substances can be treated as a two-dimensional random vector $\vec{X}=\left(X_{1}, X_{2}\right)^{T}$ which can be assumed to be normally distributed. 50 people are randomly chosen to have these three variables measured. The result is: sample mean vector $\bar{x}=(2,2.5)^{T}$ and sample covariance matrix

$$
\mathbf{S}=\left[\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right]
$$

with inverse

$$
\mathbf{S}^{-1}=\frac{1}{3}\left[\begin{array}{cc}
4 & -1 \\
-1 & 1
\end{array}\right]
$$

and eigendecomposition

$$
\mathbf{S}=\left[\begin{array}{cc}
0.29 & -0.957 \\
0.957 & 0.29
\end{array}\right]\left[\begin{array}{cc}
4.303 & 0 \\
0 & 0.697
\end{array}\right]\left[\begin{array}{cc}
0.29 & -0.957 \\
0.957 & 0.29
\end{array}\right]^{-1}
$$

(a 2 p) Perform a test at the 5% significance level if the expectation vector of the substances is $\vec{\mu}=(2,2)^{T}$.
(b 3p) Sketch a 95% confidence ellipse for the mean vector. Does $\vec{\mu}=(2,2)^{T}$ lie in it? Mark it on the graph.

