Exam in Statistical Methods, 2018-10-25

Time allowed:
Allowed aids:
Assisting teacher:
Grades:
kl: 8-12
Calculator. One handwritten A4 paper (both sides) with the students own notes.
Hector Rodriguez-Deniz
$A=19-20$ points, $B=17-18 p, C=14-16 p, D=12-13 p, E=10-11 p, F=0-9 p$

Provide a detailed report that shows motivation of the results.

1

Let $f(y)=c y^{2}, 0 \leq y \leq 2$ be the density function of Y.
a) Find c so that $f(y)$ is a density function. $1 p$
b) Find $E\left(Y^{2}\right)$ and $V(Y)$. 1p
c) Find the cumulative distribution function $F(y)$, and check that $\lim _{y \rightarrow 0} F(y)=0$ and $\lim _{y \rightarrow 2} F(y)=1$.
d) Calculate the probability $P\left(\frac{3}{4} \leq Y \leq \frac{5}{4}\right)$. 1p

2

Let the bivariate random variable (X, Y) have joint density function:
$f(x, y)=\left\{\begin{aligned} \frac{x^{2} e^{-x / y}}{2 y^{3}}, & 0 \leq x<\infty, \quad 0 \leq y \leq 1 \\ 0, & \text { elsewhere }\end{aligned}\right.$
a) Find $f(y)$. What is the "name" of this distribution? 2 p
b) Find $V(2 Y+16)$. $1 p$
c) Find $f(x \mid y)$. What is the "name" of this distribution? $1 p$

Hints: $\int x^{2} e^{-x / a} d x=\left(-a x^{2}-a^{2} 2 x-2 a^{3}\right) e^{-x / a}$, and $\lim _{x \rightarrow \infty} \frac{a x^{2}+b x+c}{e^{d x}}=0$

3

Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ denote n independent and identically distributed random variables from the following distribution with parameters α, k,
$f(y \mid \alpha, k)=\left\{\begin{array}{rr}\frac{\alpha k^{\alpha}}{y^{\alpha+1}}, & k \leq y<\infty \\ 0, & \text { elsewhere }\end{array}\right.$
a) Estimate k using the Method of Moments when $\alpha=2$. 2 p
b) Estimate α using Maximum Likelihood when $k=1$.

Hint: $\int \frac{1}{(x+a)^{2}} d x=-\frac{1}{x+a}$

4

We are interested in study the relationship between body fat and several possible predictor variables. The sample consists of 20 females with ages between 25-30 years, including the following variables:
$\mathrm{Y}=$ Amount of body fat (\%)
X1 = Triceps skinfold thickness (mm)
X2 $=$ Thigh circumference (cm)
X3 $=$ Midarm circumference (cm)
We set up the following multiple linear regression model, $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\varepsilon$, and estimated it using ordinary least-squares (OLS), obtaining the following estimates and results:

$$
\begin{aligned}
& \text { SSE }=98.405 \\
& \widehat{\boldsymbol{\beta}}=\left(\begin{array}{c}
117.085 \\
4.334 \\
-2.857 \\
-2.186
\end{array}\right) \quad\left(X^{\prime} X\right)^{-1}=\left(\begin{array}{rrrr}
1,618.867 & 48.810 & -41.849 & -25.799 \\
48.810 & 1.479 & -1.265 & -0.779 \\
-41.849 & -1.265 & 1.084 & 0.666 \\
-25.799 & -0.779 & 0.666 & 0.414
\end{array}\right)
\end{aligned}
$$

a) Test $H_{0}: \beta_{3}=0$ against $H_{a}: \beta_{3}<0$, at 5% significance level. Interpret your result. What are your conclusions for the same test at 10% significance level? $3 p$

5

Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ denote a random sample from a Poisson distributed population with density $p(y)=\frac{\theta^{y} e^{-\theta}}{y!}, y=0,1,2 \ldots$, and unknown parameter $0<\theta$. We want to perform Bayesian inference on θ by defining a conjugate Gamma prior $p(\theta) \sim \operatorname{Gamma}(\alpha, \beta)$.
a) Find the posterior distribution for θ, including the constant k. 2 p
b) Find an expression for the estimator $\hat{\theta}_{\text {Bayes }}$. $1 p$
c) If we collect $n=100$ samples and the sum of the counts is $\sum y=832$, what would be your Bayes estimate for θ if you use a prior $p(\theta) \sim \operatorname{Gamma}(2,4)$?. $1 p$

Discrete Distributions

Distribution	Probability Function	Mean	Variance
Binomial	$\begin{gathered} p(y)=\binom{n}{y} p^{y}(1-p)^{n-y} ; \\ y=0,1, \ldots, n \end{gathered}$	$n p$	$n p(1-p)$
Geometric	$\begin{gathered} p(y)=p(1-p)^{y-1} ; \\ y=1,2, \ldots \end{gathered}$	$\frac{1}{p}$	$\frac{1-p}{p^{2}}$
Hypergeometric	$\begin{gathered} p(y)=\frac{\binom{r}{y}\binom{N-r}{n-y}}{\binom{N}{n}} ; \\ y=0,1, \ldots, n \text { if } n \leq r, \\ y=0,1, \ldots, r \text { if } n>r \end{gathered}$	$\frac{n r}{N}$	$n\left(\frac{r}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{N-n}{N-1}\right)$
Poisson	$\begin{aligned} & p(y)=\frac{\lambda^{y} e^{-\lambda}}{y!} ; \\ & y=0,1,2, \ldots \end{aligned}$	λ	λ
Negative binomial	$\begin{gathered} p(y)=\binom{y-1}{r-1} p^{r}(1-p)^{y-r} ; \\ y=r, r+1, \ldots \end{gathered}$	$\frac{r}{p}$	$\frac{r(1-p)}{p^{2}}$

Continuous Distributions

Distribution
Probability Function
Mean
Variance

Uniform

$$
f(y)=\frac{1}{\theta_{2}-\theta_{1}} ; \theta_{1} \leq y \leq \theta_{2} \quad \frac{\theta_{1}+\theta_{2}}{2} \quad \frac{\left(\theta_{2}-\theta_{1}\right)^{2}}{12}
$$

Normal

$$
\begin{gathered}
f(y)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\left(\frac{1}{2 \sigma^{2}}\right)(y-\mu)^{2}\right] \\
-\infty<y<+\infty
\end{gathered}
$$

μ
σ^{2}

Exponential

$$
f(y)=\frac{1}{\beta} e^{-y / \beta} ; \quad \beta>0
$$

β
β^{2}

Gamma

$$
\begin{gathered}
f(y)=\left[\frac{1}{\Gamma(\alpha) \beta^{\alpha}}\right] y^{\alpha-1} e^{-y / \beta} ; \\
0<y<\infty
\end{gathered} \quad \alpha \beta \quad \alpha \beta^{2}
$$

Chi-square

$$
\begin{gathered}
f(y)=\frac{(y)^{(v / 2)-1} e^{-y / 2}}{2^{v / 2} \Gamma(v / 2)} \\
y^{2}>0
\end{gathered}
$$

v
$2 v$

Beta

$$
\begin{gathered}
f(y)=\left[\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}\right] y^{\alpha-1}(1-y)^{\beta-1} ; \quad \frac{\alpha}{\alpha+\beta} \quad \frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)} \\
0<y<1
\end{gathered}
$$

Table 5 Percentage Points of the t Distributions

