Exam in Statistical Methods, 2017-10-25

Time allowed:
Allowed aids:
Assisting teacher:
Grades:
kl: 8-12
Calculator. One handwritten A4 paper (both sides) with the students own notes.
Hector Rodriguez-Deniz
$A=19-20$ points, $B=17-18 p, C=14-16 p, D=12-13 p, E=10-11 p$

Provide a detailed report that shows motivation of the results.

1

Let a uniformly distributed random variable Y with parameters θ_{1}, θ_{2} such that

$$
f(y)=\left\{\begin{array}{cl}
\frac{1}{\theta_{2}-\theta_{1}}, & \theta_{1} \leq y \leq \theta_{2} \\
0, & \text { elsewhere }
\end{array} \quad \text { be the density function of } Y\right.
$$

a) Show that $E[Y]=\frac{\theta_{1}+\theta_{2}}{2}$. 1 p
b) Find the cumulative distribution function $F(y)$, and show that $F(y)=y$ when $Y \sim \operatorname{Uniform}(0,1) . \quad 1 p$
c) Calculate the probability $P(5 \leq Y \leq 10)$ when $Y \sim \operatorname{Uniform}(0,20)$. $1 p$

2

Let the bivariate random variable $\left(Y_{1}, Y_{2}\right)$ have joint density function:
$f\left(y_{1}, y_{2}\right)=\left\{\begin{aligned} c y_{1} y_{2}, & 0 \leq y_{2} \leq y_{1} \leq 1 \\ 0, & \text { elsewhere }\end{aligned}\right.$
a) Find c so that $f\left(y_{1}, y_{2}\right)$ is a density function. $2 p$
b) Find the marginal distribution $f\left(y_{1}\right) 1 p$
c) Find $P\left(Y_{1}>0.5, Y_{2}>0.5\right)$. 2 p

3

Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be a random sample from a normal distribution with mean μ and variance 1 . The density is given by $f(y \mid \mu)=\frac{1}{\sqrt{2 \pi}} e^{-0.5(y-\mu)^{2}}$
a) Estimate μ using Maximum Likelihood. 3p
b) Show that $\hat{\mu}_{M L E}$ is an unbiased and consistent estimator of μ. $2 p$

4

We collect the following random sample (y_{i}, x_{i}) of size $\mathrm{n}=7$ where Y is the dependent (output) variable and X the independent (input) variable.

\mathbf{Y}	\mathbf{X}
5	-2
4	-1
4	0
3	1
2	2
1	3
1	4

a) Set up the simple linear regression model and estimate β_{0} and β_{1}.
b) Test if the slope is zero. You may use without showing any calculations that SSE=0,571. Use 5\% significance level. Interpret your result.
c) Find a 90% confidence interval for $E[Y]=\beta_{0}+\beta_{1} x^{*}$ at $x^{*}=5$. 1p

5

We want to estimate the number of patients arriving in an emergency room at Linköping's Hospital during 22:00-23:00 on Fridays. We collect a sample of size n, and we use a Poisson distribution for modeling the data, i.e. $Y \sim$ Poisson (λ). Now we place a Gamma prior on λ, i.e. $\lambda \sim \operatorname{Gamma}(\alpha, \beta)$.
a) Find the posterior distribution of λ, including the proportionality constant.
b) If we collect a sample such that $n=10, \sum y=71$, what would be your Bayes estimate for the number of patients after using a prior Gamma $(4,2)$?.

1p

Discrete Distributions

Distribution	Probability Function	Mean	Variance
Binomial	$\begin{gathered} p(y)=\binom{n}{y} p^{y}(1-p)^{n-y} ; \\ y=0,1, \ldots, n \end{gathered}$	$n p$	$n p(1-p)$
Geometric	$\begin{gathered} p(y)=p(1-p)^{y-1} ; \\ y=1,2, \ldots \end{gathered}$	$\frac{1}{p}$	$\frac{1-p}{p^{2}}$
Hypergeometric	$\begin{gathered} p(y)=\frac{\binom{r}{y}\binom{N-r}{n-y}}{\binom{N}{n}} ; \\ y=0,1, \ldots, n \text { if } n \leq r, \\ y=0,1, \ldots, r \text { if } n>r \end{gathered}$	$\frac{n r}{N}$	$n\left(\frac{r}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{N-n}{N-1}\right)$
Poisson	$\begin{aligned} & p(y)=\frac{\lambda^{y} e^{-\lambda}}{y!} ; \\ & y=0,1,2, \ldots \end{aligned}$	λ	λ
Negative binomial	$\begin{gathered} p(y)=\binom{y-1}{r-1} p^{r}(1-p)^{y-r} ; \\ y=r, r+1, \ldots \end{gathered}$	$\frac{r}{p}$	$\frac{r(1-p)}{p^{2}}$

Continuous Distributions

Distribution	Probability Function	Mean	Variance
Uniform	$f(y)=\frac{1}{\theta_{2}-\theta_{1}} ; \theta_{1} \leq y \leq \theta_{2}$	$\frac{\theta_{1}+\theta_{2}}{2}$	$\frac{\left(\theta_{2}-\theta_{1}\right)^{2}}{12}$
Normal	$\begin{gathered} f(y)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\left(\frac{1}{2 \sigma^{2}}\right)(y-\mu)^{2}\right] \\ -\infty<y<+\infty \end{gathered}$	μ	σ^{2}
Exponential	$\begin{gathered} f(y)=\frac{1}{\beta} e^{-y / \beta} ; \quad \beta>0 \\ 0<y<\infty \end{gathered}$	β	β^{2}
Gamma	$\begin{gathered} f(y)=\left[\frac{1}{\Gamma(\alpha) \beta^{\alpha}}\right] y^{\alpha-1} e^{-y / \beta} \\ 0<y<\infty \end{gathered}$	$\alpha \beta$	$\alpha \beta^{2}$
Chi-square	$\begin{gathered} f(y)=\frac{(y)^{(v / 2)-1} e^{-y / 2}}{2^{v / 2} \Gamma(v / 2)} ; \\ y^{2}>0 \end{gathered}$	v	$2 v$
Beta	$f(y)=\left[\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}\right] y^{\alpha-1}(1-y)^{\beta-1} ;$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{\beta)^{2}(\alpha+\beta+1)}$

Table 5 Percentage Points of the t Distributions

