Exam in Statistical Methods, 2016-10-17

Time allowed:
Allowed aids:
Assisting teacher:
Grades:
kl: 8-12
Calculator. One handwritten A4 paper (both sides) with the students own notes.
Hector Rodriguez-Deniz
$A=19-20$ points, $B=17-18 p, C=14-16 p, D=12-13 p, E=10-11 p, F=0-9 p$

Provide a detailed report that shows motivation of the results.

1

Let $f(y)=\left\{\begin{array}{r}c y^{2}+y, 0 \leq y \leq 1 \\ 0, \text { elsewhere }\end{array}\right.$ be the density function of the random variable Y .
a) Find the value of c that makes $f(y)$ a density function. $1 p$
b) Find the cumulative distribution function $F(y)$. $1 p$
c) Calculate the probability $P\left(\frac{1}{2} \leq Y \leq 1\right)$. 1 p

2

Let the bivariate random variable $\left(Y_{1}, Y_{2}\right)$ have the joint density function:
$f\left(y_{1}, y_{2}\right)=\left\{\begin{aligned} 6\left(1-y_{2}\right), & 0 \leq y_{1} \leq y_{2} \leq 1 \\ 0, & \text { elsewhere }\end{aligned}\right.$
a) Find the marginal distributions $f\left(y_{1}\right)$ and $f\left(y_{2}\right)$. Are Y_{1} and Y_{2} independent? 2 p
b) Find $E\left[y_{1}\right]$ 1p
c) Find $P\left(Y_{1} \mid Y_{2}=y_{2}\right)$. Can you identify the result as a known distribution? 1 p

3

Let a sample of size n from a random variable $Y \sim \operatorname{Exponential}(\lambda)$, where $\lambda=\frac{1}{\beta}$ is the rate parameter and $\lambda>0$. The density is given by $f(y)=\lambda e^{-\lambda y}$. Note that $E[Y]=\frac{1}{\lambda}$
a) Estimate λ using Method of Moments. $1 p$
b) Estimate λ using Maximum Likelihood. $2 p$
c) Estimate λ using Bayesian method with a conjugate Gamma prior $\lambda \sim \operatorname{Gamma}(8,4)$. What is the actual value of the estimate for $n=10$ and $\sum y=30$?

4

We collect the following random sample $\left(y_{i}, x_{i}\right)$ of size $\mathrm{n}=6$ where Y is the dependent (output) variable and X the independent (input) variable.

Y	X
7	1
8	3
9	5
11	7
15	9
22	11

a) Fit the model, $Y=\beta_{0}+\beta_{1} x+\varepsilon$, to the data above using ordinary least-squares (OLS). Present the equation of the fitted line. Also, plot the points and sketch the fitted line.

2p
b) Calculate the sum of squared (SSE) and mean squared (MSE) errors.
c) Test if the intercept is significant $\left(H_{0}: \beta_{0}=0\right)$ at 95% confidence level. Conclusions?

5

Show, by using the properties of the expected value and variance, that the expected value of a Chisquare distributed variable is equal to the number of degrees of freedom. That is, show that if $Y \sim \chi^{2}(v)$ then $E[Y]=v$.

Hint: $Y=\sum_{i=1}^{v}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}$ and $X_{i} \sim N\left(\mu, \sigma^{2}\right)$

Good luck!
Lycka till!

Table 1 Discrete Distributions

Distribution	Probability Function	Mean	Variance	MomentGenerating Function
Binomial	$\begin{gathered} p(y)=\binom{n}{y} p^{y}(1-p)^{n-y} \\ y=0,1, \ldots, n \end{gathered}$	$n p$	$n p(1-p)$	$\left[p e^{t}+(1-p)\right]^{n}$
Geometric	$\begin{gathered} p(y)=p(1-p)^{y-1} ; \\ y=1,2, \ldots \end{gathered}$	$\frac{1}{p}$	$\frac{1-p}{p^{2}}$	$\frac{p e^{t}}{1-(1-p) e^{t}}$
Hypergeometric	$\begin{aligned} & p(y)=\frac{\binom{r}{y}\binom{N-r}{n-y}}{\binom{N}{n}} ; \\ & y=0,1, \ldots, n \text { if } n \leq r, \\ & y=0,1, \ldots, r \text { if } n>r \end{aligned}$	$\frac{n r}{N}$	$n\left(\frac{r}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{N-n}{N-1}\right)$	does not exist in closed form
Poisson	$\begin{aligned} & p(y)=\frac{\lambda^{y} e^{-\lambda}}{y!} ; \\ & y=0,1,2, \ldots \end{aligned}$	λ	λ	$\exp \left[\lambda\left(e^{t}-1\right)\right]$
Negative binomial	$\begin{gathered} p(y)=\binom{y-1}{r-1} p^{r}(1-p)^{y-r} ; \\ y=r, r+1, \ldots \end{gathered}$	$\frac{r}{p}$	$\frac{r(1-p)}{p^{2}}$	$\left[\frac{p e^{t}}{1-(1-p) e^{t}}\right]^{r}$

Table 2 Continuous Distributions

Distribution	Probability Function	Mean	Variance	MomentGenerating Function
Uniform	$f(y)=\frac{1}{\theta_{2}-\theta_{1}} ; \theta_{1} \leq y \leq \theta_{2}$	$\frac{\theta_{1}+\theta_{2}}{2}$	$\frac{\left(\theta_{2}-\theta_{1}\right)^{2}}{12}$	$\frac{e^{t \theta_{2}}-e^{t \theta_{1}}}{t\left(\theta_{2}-\theta_{1}\right)}$
Normal	$\begin{gathered} f(y)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\left(\frac{1}{2 \sigma^{2}}\right)(y-\mu)^{2}\right] \\ -\infty<y<+\infty \end{gathered}$	μ	σ^{2}	$\exp \left(\mu t+\frac{t^{2} \sigma^{2}}{2}\right)$
Exponential	$\begin{gathered} f(y)=\frac{1}{\beta} e^{-y / \beta} ; \quad \beta>0 \\ 0<y<\infty \end{gathered}$	β	β^{2}	$(1-\beta t)^{-1}$
Gamma	$\begin{gathered} f(y)=\left[\frac{1}{\Gamma(\alpha) \beta^{\alpha}}\right] y^{\alpha-1} e^{-y / \beta} \\ 0<y<\infty \end{gathered}$	$\alpha \beta$	$\alpha \beta^{2}$	$(1-\beta t)^{-\alpha}$
Chi-square	$\begin{gathered} f(y)=\frac{(y)^{(v / 2)-1} e^{-y / 2}}{2^{v / 2} \Gamma(v / 2)} \\ y>0 \end{gathered}$	v	$2 v$	$(1-2 t)^{-v / 2}$
Beta	$\begin{gathered} f(y)=\left[\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}\right] y^{\alpha-1}(1-y)^{\beta-1} ; \\ 0<y<1 \end{gathered}$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$	does not exist in closed form

Percentage Points of the t Distributions					
$t_{\text {. }} 100$	$t_{\text {. } 050}$	t_{025}	$t_{\text {O10 }}$	t_{005}	df
3.078	6.314	12.706	31.821	63.657	1
1.886	2.920	4.303	6.965	9.925	2
1.638	2.353	3.182	4.541	5.841	3
1.533	2.132	2.776	3.747	4.604	4
1.476	2.015	2.571	3.365	4.032	5
1.440	1.943	2.447	3.143	3.707	6
1.415	1.895	2.365	2.998	3.499	7
1.397	1.860	2.306	2.896	3.355	8
1.383	1.833	2.262	2.821	3.250	9
1.372	1.812	2.228	2.764	3.169	10
1.363	1.796	2.201	2.718	3.106	11
1.356	1.782	2.179	2.681	3.055	12
1.350	1.771	2.160	2.650	3.012	13
1.345	1.761	2.145	2.624	2.977	14
1.341	1.753	2.131	2.602	2.947	15
1.337	1.746	2.120	2.583	2.921	16
1.333	1.740	2.110	2.567	2.898	17
1.330	1.734	2.101	2.552	2.878	18
1.328	1.729	2.093	2.539	2.861	19
1.325	1.725	2.086	2.528	2.845	20
1.323	1.721	2.080	2.518	2.831	21
1.321	1.717	2.074	2.508	2.819	22
1.319	1.714	2.069	2.500	2.807	23
1.318	1.711	2.064	2.492	2.797	24
1.316	1.708	2.060	2.485	2.787	25
1.315	1.706	2.056	2.479	2.779	26
1.314	1.703	2.052	2.473	2.771	27
1.313	1.701	2.048	2.467	2.763	28
1.311	1.699	2.045	2.462	2.756	29
1.282	1.645	1.960	2.326	2.576	inf.

