Examination Probability Theory

Linköpings Universitet, IDA, Statistik

Course code and name:	732A63 Probability Theory
Date:	2018/10/23, 8-12
Examinator:	Krzysztof Bartoszek phone 013–281 885
Allowed aids:	Pocket calculator
	Table with common formulae and moment generating functions
	(distributed with the exam)
	Table of integrals (distributed with the exam)
	Table with distributions from Appendix B in the course book
	(distributed with the exam)
Grades:	A = [19 - 20] points
	B = [17 - 19) points
	C = [12 - 17) points
	D = [10 - 12) points
	E = [8 - 10) points
	F = [0 - 8) points
Instructions:	Write clear and concise answers to the questions.
	Make sure to specify the support region for all density functions.

Problem 1 (5p)

Let X and Y be jointly distributed random variables such that

 $Y|X=x \ \sim \text{Binomial}(n,x) \ \text{ with } X \sim \text{Uniform}[0,1].$

Compute EY, Var [Y] and Cov [X, Y] (without using the formula for the probability distribution nor the cumulative distribution function of Y).

Problem 2 (5p)

Let $X_1, X_2, X_3, \ldots, X_n$ be independent, continuous random variables with common cumulative distribution function F(x), and consider the order statistic $(X_{(1)}, X_{(2)}, \ldots, X_{(n)})$. Compute $\mathbb{E}\left[F(X_{(n)}) - F(X_{(1)})\right]$

TIP: Recall that the joint density of $X_{(1)}$ and $X_{(n)}$ is given by

$$f_{X_{(1)},X_{(n)}}(x,y) = \begin{cases} n(n-1)(F(y) - F(x))^{n-2}f(y)f(x) & \text{for } x < y, \\ 0, & \text{otherwise}. \end{cases}$$

Problem 3 (5p)

Let Z be a random variable with finite first two moments. Denote by $\mathbb{M}[X]$ a median of X, i.e. a value such that $P(X \ge \mathbb{M}[X]) \ge 0.5$ and $P(X \le \mathbb{M}[X]) \ge 0.5$. It is known that $\mathbb{M}[X]$ is the minimizer of $\mathbb{E}[|X - c|]$. Show that

$$|\mathbb{M}[X] - \mathbb{E}[X]| \le \sqrt{\operatorname{Var}[X]}.$$

TIP: Jensen's inequality: for a convex function $\phi : \mathbb{R} \to \mathbb{R}$ it holds that

$$\phi(\mathbb{E}[X]) \le \mathbb{E}[\phi(X)].$$

Figure 1: A function $f : \mathbb{R} \to \mathbb{R}$ is convex if "if the line segment between any two points on the graph of the function lies above or on the graph" (https://en.wikipedia.org/wiki/ Convex_function). Graphic by "Eli Osherovich - Own work, CC BY-SA 3.0, https://commons. wikimedia.org/w/index.php?curid=10764763".

Problem 4 (5p)

a) (4p) Show that the average,

$$Z = \frac{1}{n} \sum_{i=1}^{n} X_i$$

of n independent Cauchy random variables has the Cauchy distribution too.

b) (1p) Why does the above result not violate the law of large numbers?