Examination Probability Theory

Linköpings Universitet, IDA, Statistik

Course code and name:	732A63 Probability Theory
Date:	2018/10/23, 8-12
Examinator:	Krzysztof Bartoszek phone 013-281885
Allowed aids:	Pocket calculator
	Table with common formulae and moment generating functions (distributed with the exam)
	Table of integrals (distributed with the exam)
	Table with distributions from Appendix B in the course book (distributed with the exam)
Grades:	$\mathrm{A}=[19-20]$ points
	$\mathrm{B}=[17-19)$ points
	$\mathrm{C}=[12-17)$ points
	$\mathrm{D}=[10-12)$ points
	$\mathrm{E}=[8-10)$ points
	$\mathrm{F}=[0-8)$ points
Instructions:	Write clear and concise answers to the questions.
	Make sure to specify the support region for all density functions.

Problem 1 (5p)

Let X and Y be jointly distributed random variables such that

$$
Y \mid X=x \sim \operatorname{Binomial}(n, x) \text { with } X \sim \operatorname{Uniform}[0,1] .
$$

Compute $E Y$, Var $[Y]$ and $\operatorname{Cov}[X, Y]$ (without using the formula for the probability distribution nor the cumulative distribution function of Y).

Problem 2 (5p)

Let $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$ be independent, continuous random variables with common cumulative distribution function $F(x)$, and consider the order statistic $\left(X_{(1)}, X_{(2)}, \ldots, X_{(n)}\right)$. Compute $\mathbb{E}\left[F\left(X_{(n)}\right)-F\left(X_{(1)}\right)\right]$
TIP: Recall that the joint density of $X_{(1)}$ and $X_{(n)}$ is given by

$$
f_{X_{(1)}, X_{(n)}}(x, y)=\left\{\begin{array}{cl}
n(n-1)(F(y)-F(x))^{n-2} f(y) f(x) & \text { for } x<y \\
0, & \text { otherwise }
\end{array}\right.
$$

Problem 3 (5p)

Let Z be a random variable with finite first two moments. Denote by $\mathbb{M}[X]$ a median of X, i.e. a value such that $P(X \geq \mathbb{M}[X]) \geq 0.5$ and $P(X \leq \mathbb{M}[X]) \geq 0.5$. It is known that $\mathbb{M}[X]$ is the minimizer of $\mathbb{E}[|X-c|]$. Show that

$$
|\mathbb{M}[X]-\mathbb{E}[X]| \leq \sqrt{\operatorname{Var}[X]}
$$

TIP: Jensen's inequality: for a convex function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ it holds that

$$
\phi(\mathbb{E}[X]) \leq \mathbb{E}[\phi(X)] .
$$

Figure 1: A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if "if the line segment between any two points on the graph of the function lies above or on the graph" (https://en.wikipedia.org/wiki/ Convex_function). Graphic by "Eli Osherovich - Own work, CC BY-SA 3.0, https://commons. wikimedia.org/w/index.php?curid=10764763".

Problem 4 (5p)

a) (4p) Show that the average,

$$
Z=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

of n independent Cauchy random variables has the Cauchy distribution too.
b) (1p) Why does the above result not violate the law of large numbers?

