Examination Probability Theory

Linköpings Universitet, IDA, Statistik

Course code and name:	732A63 Probability Theory
Date:	2017/11/30, 8-12
Examinator:	Krzysztof Bartoszek phone 013–281 885
Allowed aids:	Pocket calculator
	Table with common formulae and moment generating functions
	(distributed with the exam)
	Table of integrals (distributed with the exam)
	Table with distributions from Appendix B in the course book
	(distributed with the exam)
Grades:	A = [19 - 20] points
	B = [17 - 19) points
	C = [12 - 17) points
	D = [10 - 12) points
	E = [8 - 10) points
	F = [0 - 8) points (FAIL)
Instructions:	Write clear and concise answers to the questions.
	Make sure to specify the support region for all density functions.

Problem 1 (5p)

Let X be continuous with density function $f(x) = C(x - x^2)$, where $\alpha < x < \beta$ and C > 0.

- a) What are the possible values of α and β ?
- b) What can C be?

Problem 2 (5p)

Show that if X and Y are independent $\mathcal{N}(0,1)$ —distributed random variables, then $X/Y \sim \text{Cauchy}(0,1)$.

Problem 3 (5p)

Show by using moment generating functions that if $X \sim \text{Laplace}(1)$, then $X \stackrel{\mathcal{D}}{=} Y_1 - Y_2$, where Y_1 and Y_2 are independent, exponentially distributed random variables.

Problem 4 (5p)

Let Y_1, Y_2, \ldots, Y_n be independent identically distributed random variables, each of which can take any value in the set of integers $\{0, 1, \ldots, 9\}$ with equal probability 1/10. Let

$$X_n = \sum_{i=1}^n Y_i 10^{-i}.$$

Show by the use of characteristic functions that X_n converges in distribution to Unif[0, 1]. **TIP:** The characteristic function of a discrete uniform distribution on the integer set $\{0, 1, ..., n\}$ is

$$\phi(t) = \frac{1}{n+1} \frac{1 - e^{(n+1)it}}{1 - e^{it}}$$

TIP: For any real, both positive x and y we have

$$\lim_{x \to \infty} x(1 - e^{iy/x}) = -iy.$$