Examination Probability Theory

Linköpings Universitet, IDA, Statistik

Course code and name:	732A63 Probability Theory
Date:	2017/10/23, 8-12
Examinator:	Krzysztof Bartoszek phone 013-281885
Allowed aids:	Pocket calculator
	Table with common formulae and moment generating functions (distributed with the exam)
	Table of integrals (distributed with the exam)
	Table with distributions from Appendix B in the course book (distributed with the exam)
Grades:	$\mathrm{A}=[19-\infty)$ points
	$\mathrm{B}=[17-19)$ points
	$\mathrm{C}=[12-17)$ points
	$\mathrm{D}=[10-12)$ points
	$\mathrm{E}=[8-10)$ points
	$\mathrm{F}=[0-8)$ points (FAIL)
Instructions:	Write clear and concise answers to the questions.
	Make sure to specify the support region for all density functions.

Problem 1 (4p)

Show that if $X \sim \operatorname{Cauch} y(0,1)$, then so is $1 / X$.

Problem 2 (5p)

The random variables X and Y have a joint probability density of the form

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
a(x+y)^{2} & \text { if } 0<y<x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a 1p) Are X and Y independent?
(b 1p) Determine the constant a.
(c 1p) Compute the marginal density of Y
(d 1p) What is the marginal density of X and why?
(e 1p) Compute the conditional density of $X \mid Y=y$.

Problem 3 (6p)

Assume that you take a bus every working day to University. You arrive every day at the bus stop and wait for an random time that is exponentially distributed with rate $10(\mathrm{~min})^{-1}$. Assume you go to University 200 times in the year.
(a 2 p) What is the distribution of your minimal waiting time?
(b 2 p) What can you say about the distribution of your maximal waiting time?
(c 2p) Now from the new year the bus company introduced a new scheduling system and your waiting time that changed to be exponentially distributed with rate $20(\mathrm{~min})^{-1}$. Do you expect that you will wait longer or shorter for the bus? What is the distribution of the minimum of your waiting time over two years (400 days - the previous year with the old system and the new year with the new system)?

Problem 4 (5p)

Suppose that X_{1}, X_{2}, \ldots are independent, $\operatorname{Pareto}(1,2)$-distributed random variables and set $Y_{n}=$ $\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$.
(a 2 p) Show that $Y_{n} \bar{P} \rightarrow 1$ as $n \rightarrow \infty$. It thus follows that $Y_{n} \approx 1$ with a probability close to 1 when n is large. One might therefore suspect that there exists a limit theorem to the effect that $Y_{n}-1$, suitably rescaled, converges in distribution as $n \rightarrow \infty$ (note that $Y_{n}>1$ always).
(b 3p) Show that $n\left(Y_{n}-1\right)$ converges in distribution as $n \rightarrow \infty$, and determine the limit distribution.

