Exam in Probability Theory, 6 credits

Exam time: $\quad 8-12$

Allowed: Pocket calculator.
Table with common formulas and moment generating functions (distributed with the exam).
Table of integrals (distributed with the exam).
Table with distributions from Appendix B in the course book (distributed with the exam).
Examinator: Mattias Villani.
Assisting teacher: Per Sidén, phone 0704-977175
Grades: Grades: Maximum is 20 points.
A: 19 points
B: 17 points
C: 14 points
D: 12 points
E: 10 points
$\mathrm{F}:<10$ points

- Write clear and concise answers to the questions.
- Make sure to specify the definition region for all density functions.

1. Assume $X \sim N(0,1)$ and $Y \sim N(0,4)$ and that X and Y are independent.
(a) Compute $E[(X+1)(Y-1)]$. 1p.
(b) Compute $E[Y \mid X+Y=6]$. 1.5p.
(c) Derive the distribution of $U=\frac{X}{Y}$. Does it belong to a known distribution?
2.5p.
2. Let $Y \mid \theta \sim \operatorname{Bin}(n, \theta)$, where n is a known positive integer. Let the density of θ be

$$
f_{\theta}(\theta)=a \cdot \theta^{3}
$$

for $\theta \in[0,1]$ and $f_{\theta}(\theta)=0$ otherwise.
(a) Determine the constant a, so that $f_{\theta}(\theta)$ is a proper density.
1 p.
(b) Calculate the variance of Y.

$$
2 \mathrm{p}
$$

(c) Compute the density of Y.

[^0]3. Consider a fair die with probability $1 / 6$ of rolling a six. Consider a game where the die is rolled until a six comes up and let the random variable X denote the number of die rolls required until this event happens.
(a) Determine the probability function of X and state if it belongs to a known distribution. 1p.
(b) Assume that the same game is played n times and let $X_{\max }$ be the maximum value of X across all games. Derive the distribution function of $X_{\max }$. 2 p .
(c) How many times does one have to play the game for having at least 50% chance of obtaining a value of $X_{\max }$ that is greater than or equal to 30 ?

2 p .
4. Let X and Y be random variables such that

$$
Y \mid X=x \sim N(0, x)
$$

with $X \sim \operatorname{Po}(\lambda)$.
(a) Find the characteristic function of Y.

1 p.
(b) Show that

$$
\frac{Y}{\sqrt{\lambda}} \xrightarrow{d} N(0,1)
$$

as $\lambda \rightarrow \infty$.
2p.
(c) Formulate and prove the Central Limit Theorm.

Good Luck!

Per

[^0]: 2 p .

