## **Examination**

Linköping University, Department of Computer and Information Science, Statistics and Machine Learning

Course code and name 732A62 Time Series Analysis

Date and time 2017-12-04, 08.00-12.00

Assisting teacher Oleg Sysoev

Allowed aids "Time series analysis and its application" by Shumway & Stoffer or/and

"Time series analysis" by Cryer and Chan, Information Sheet,

Calculator.

Grades: A=19-20 points

B=16-18 points

C=13-15 points

D=11-12 points

E=9-10 points

F=0-8 points

Give motivated answers to the questions. If an answer is not motivated, the points are reduced.

1. The figure below shows dependence of  $x_t$  on  $x_{t-1}$ ,  $x_{t-2}$ ,  $x_{t-3}$ ,  $x_{t-4}$ . Based on this information, decide which lagged variables should be taken as inputs explaining  $x_t$ . You may also discover that the smoothing function is nonlinear. Suggest how this information may be incorporated into the model for  $x_t$ . (1p)



- 2. Use the coefficient matching method to compare the following two models:  $x_t = 0.4x_{t-1} + 0.1x_{t-2} + w_t + 0.1w_{t-1}$  and  $x_t = w_t + 0.5w_{t-1} + 0.3w_{t-2} + 0.2w_{t-3}$ , i.e. show whether these models are similar or they are rather too different. **(3p)**
- 3. The following sample ACF values were reported:  $\hat{\rho}(0) = 1, \hat{\rho}(1) = 0.7, \hat{\rho}(2) = 0.4, \hat{\rho}(3) = 0.1$ . What is the smallest possible sample size for which one can decide that MA(2) model is reasonable given these ACF values? **(1p)**
- 4. Write down an equation of the following model  $ARIMA(1,0,0) \times (0,2,2)_4$ . The final expression should not contain backshift operators **(2p)**
- 5. Assume that  $x_t$  is a stationary AR(1) model with some parameter  $\phi$  and  $\sigma_w^2=1$ . Derive the autocovariance function for  $y_t=\frac{1}{2}(x_t+x_{t-1})$ . Is this process stationary? (2p)
- 6. Assuming that  $x_t = 0.5x_{t-4} + w_t + 0.1w_{t-1}$ , use general homogeneous equations to derive  $\rho(h)$  for  $h = 2,6,10,14,18, \dots$  (2p)
- 7. Given the data set  $x_1 = 3$ ,  $x_2 = 1$  and  $x_3 = 4$ , estimate parameters  $\theta$  and  $\phi$  of ARMA(1,1) model by using the conditional least squares principle. (3p)
- 8. Which of the following ARIMA models is the most suitable according to the plot below: a) ARIMA(2,0,1) b)  $ARIMA(2,0,0) \times (0,0,2)_8$ , c)  $ARIMA(1,0,1) \times (0,0,3)_8$  (1p)





- 9. Autocovariances of a stationary process were computed in a previous study as  $\gamma(0)=1$ ,  $\gamma(1)=0.2$ ,  $\gamma(2)=0.4$  and  $\gamma(3)=0.1$ . Compute a confidence interval for the 1-step ahead forecast assuming the following data set:  $x_1=4$ ,  $x_2=2$  (3p)
- 10. Identify whether there is an indication of the redundancy in the following estimated ARMA process (2p)

```
> arima(x, order = c(2, 0, 0), seasonal = list(order = c(0, 0, 1), period = 4))
```

Call: arima(x = x, order = c(2, 0, 0), seasonal = list(order = c(0, 0, 1), period = 4))

Coeffi ci ents: