Examination

Linköping University, Department of Computer and Information Science, Statistics and Machine Learning

Course code and name	732A62 Time Series Analysis
Date and time	2017-10-26, 08.00-12.00
Assisting teacher	Oleg Sysoev
Allowed aids	"Time series analysis and its application" by Shumway \& Stoffer or/and "Time series analysis" by Cryer and Chan, Information Sheet, Calculator.
Grades:	$\mathrm{B}=19-20$ points
	$\mathrm{C}=13-18$ points points
$\mathrm{D}=11-12$ points	
$\mathrm{E}=9-10$ points	
$\mathrm{F}=0-8$ points	

Give motivated answers to the questions. If an answer is not motivated, the points are reduced.

1. For time series $X=\left(x_{1}, \ldots x_{5}\right)=(2,4,-2,6,10)$, compute a sample autocorrelation $\hat{\rho}_{2}$ (2p)
2. Assume that x_{t} and y_{t} are two uncorrelated $\operatorname{AR}(1)$ processes with mean zero, $\sigma_{w}^{2}=1$, and $\phi=0.2$ for process x_{t} and $\phi=0.5$ for process y_{t}. Consider $z_{t}=x_{t}+0.3 y_{t}$. Is z_{t} stationary? Compute its autocovariance function (2p)
3. Determine ARMA orders for a stationary process $x_{t}=2-0.5 x_{t-1}+w_{t}+0.1 w_{t-1}$. Use this information to compute ACF values for this process (you don't need to derive ACF formula yourself). Make also a long-range forecast, i.e. find out the limiting prediction value \tilde{x}_{n+m} when $m \rightarrow \infty$. (2p)
4. Check the invertibility and causality of the following process and determine its orders in $\operatorname{ARIMA}(p, d, q) \times(P, D, Q)_{s}$ notation (3p):
a. $\quad x_{t}=x_{t-1}+2 x_{t-4}-2 x_{t-5}+w_{t}-0.3 w_{t-1}-0.1 w_{t-2}$
5. Estimate coefficients of the $\operatorname{AR}(2)$ process using Yule-Walker equations by using information about the following autocorrelations: $\hat{\rho}(1)=0.6, \hat{\rho}(2)=0.2$ and write down the estimated model equation.(2p)
6. For the $\operatorname{AR}(2)$ model with estimated parameters $\phi_{1}=0.8, \phi_{2}=-0.5, \mu=5$ and $\sigma_{w}^{2}=1$, compute a 95\% prediction interval for the two-step-ahead forecast, i.e. the interval for \tilde{x}_{n+2}^{n}. Assume that $x_{n}=6$, $x_{n-1}=8$. (3p)
7. Write down an equation of $\operatorname{ARIMA}(0,1,1) \times(2,0,0)_{6}$ and determine which $\operatorname{ARIMA}(p, d, q)$ model it may correspond to. (1p)
8. Look at the figures below and determine which ARIMA model of the following models is the most suitable: ARIMA(0,0,6), ARIMA(1,0,1), ARIMA(7,0,5). Motivate your answer. (1p)

Series data

Series data

9. Look at the figure below and determine which GARCH models of the following models is the most suitable: $\operatorname{GARCH}(1,2), \operatorname{GARCH}(2,1), \operatorname{GARCH}(2,2)$. Motivate your answer. (1p)

```
> TSA::eacf(data^2)
AR/MA
```



```
0 x x x x o o o o o o o o o o
1 x x o o o o o o o o o o o o
2 x o o o o o o o o o o o o o
3 x x o o o o o o o o o o o o
4 x x x o o o o o o o o o o o
5 x x x x o o o o o o o o o o
6 x < o x o o o o o o o o o o
7 x x o x x x o o o o o o o o
|
```

10. After applying a seasonal differencing with period $s=12$ to data series x_{t}, an ARIMA model was fit to the resulting data $y_{t}=\nabla_{12} x_{t}$ and the following output was obtained. By using this output, write down the equation of the estimated model in terms of x_{t} and investigate whether the model is reducible or not. Present the final model equation (if reducible, fix this problem first). The final equation should not contain backshift operators. (2p)
```
> arima(data, order = c(1,0,2))
Ca11:
arima(x = data, order = c(1, 0, 2))
Coefficients:
\begin{tabular}{llrc} 
ar1 & ma1 & ma2 & intercept \\
-0.6822 & 0.1657 & -0.5784 & -0.0304 \\
0.1725 & 0.1576 & 0.0988 & 0.0321
\end{tabular}
```

11. Determine the sine and the cosine amplitudes of the frequency $w=0.1$ by knowing that $n=100$ and looking at the following output of the Discrete Fourier Transform $d\left(\frac{j}{n}\right) \quad$ (1p):
> d_w
Time Series:
Start = 1
End $=100$
Frequency $=1$

	-0.3178445+0.0000000i	-0.3589806+0.0755837i	-0.1892396+0.1945842i	0.2029804-0.2869672i	
	$-0.2120019+0.37552991$	$-0.2033392+0.0213895 i$	0.0997303-0.3245039i	0.3471806-0.0049712i	-0.1613730+0.7358558i
[11]	-0.2628591-0.1884668i	0.4755845-0.1637641i	-0.2228794-0.4961815i	0.1699727-0.6155358	$0.6705536+0.4506432 i$
[16]	$0.1878075+0.7227206 i$	$0.0312714-0.1132900 \mathrm{i}$	$-0.2683178+1.4487834 i$	-0.8189616-0.6629312	$0.6612961-0.5629343 i$
[21]	-0.2272997-0.3131199i	-0.4083954+0.2459699i	$1.0130480+0.4680813 i$	-0.9567709+1.5908104i	-0.9626990-0.8586150i
[26]	$1.0216143+0.9699860 i$	$0.8894355+0.9648221 i$	0.4177923-0.5638944i	-0.2176846+1.6146570i	0.4500253-0.7771727i
[31]	-0.7709906+0.4876455i	-0.6182064-0.7530244i	$0.1262764+0.7975134 i$	$0.7088413+0.2817067 i$	-0.0451891+1.0683996i
[36]	1.2293375-0.8427702i	$0.3241282+0.1837064 i$	-3.0180123-1.1145472i	-0.6914161-0.6160959i	$0.6943809+1.4476735 i$
[41	1.8728691-0.7850129i	-0.3529247+0.9450142i	1.1730722-1.5984589i	-0.34	$0.8983568+0.4662211 i$
[46]	$0.0604524+0.6418081 i$	0.8262510-0.6674243i	$-1.0350619+0.6761142 i$	-0.8742387+0.3526892	-0.291
[51]	-1.5086348-0.0000000i	-0.2912167-0.6240876i	-0.8742387-0.3526892i	-1.0350619-0.6761142i	$0.8262510+0.6674243 i$
[56]	0.0604524-0.6418081i	0.8983568-0.4662211i	-0.3468271+1.0955862i	1.1730722+1.5984589i	-0.3529247-0.9450142i
[61]	$1.8728691+0.78501291$	0.6943809-1.4476735i	-0.6914161+0.6160959i	-3.0180123+1.1145472i	0.3241282-0.1837064i
[66]	$1.2293375+0.8427702 i$	-0.0451891-1.0683996i	0.7088413-0.2817067i	0.1262764-0.7975134i	-0.6182064+0.7530244i
[71]	-0.7709906-0.4876455i	$0.4500253+0.7771727 i$	-0.2176846-1.6146570i	$0.4177923+0.5638944$	0.8894355-0.9648221i
[76]	1.0216143-0.9699860i	$-0.9626990+0.8586150 i$	-0.9567709-1.5908104i	1.0130480-0.4680813i	-0.4083954-0.2459699
[81]	-0.2272997+0.3131199i	$0.6612961+0.5629343 i$	$-0.8189616+0.6629312 i$	-0.2683178-1.4487834i	$0.0312714+0.1132900 i$
[86]	0.1878075-0.7227206i	0.6705536-0.4506432i	$0.1699727+0.6155358 i$	-0.2228794+0.4961815i	$0.4755845+0.1637641 i$
[91]	-0.2628591+0.1884668i	-0.1613730-0.7358558i	$0.3471806+0.0049712 i$	$0.0997303+0.3245039 i$	-0.2033392-0.0213895i
	-0.2120019-0.3755299i	0.5454744-0.2230626i			

