
Algorithms Exam TIN093/DIT602

Course: Algorithms

Course code: TIN 093 (CTH), DIT 602 (GU)

Date, time: 27th October 2018, 14:00–18:00

Building: L

Responsible teacher: Peter Damaschke, Tel. 5405

Examiner: Peter Damaschke

Exam aids: one A4 paper (both sides), dictionary,

printouts of the Lecture Notes and assignments

(possibly with own annotations).

Time for questions: around 15:00 and around 16:30.

Solutions: will appear on the course homepage.

Results: will appear in ladok.

Point limits: CTH: 28 for 3, 38 for 4, 48 for 5; GU: 28 for G, 48 for VG;

PhD students: 38. Maximum: 60.

Inspection of grading (exam review):

Time will be announced on the course homepage.

1

Instructions and Advice:

• First read through all problems, such that you know what is unclear

to you and what to ask the responsible teacher.

• Write solutions in English.

• Start every new problem on a new sheet of paper.

• Write your exam number on every sheet.

• Write legible. Unreadable solutions will not get points.

• Answer precisely and to the point, without digressions.

Unnecessary additional writing may obscure the actual solutions.

• Motivate all claims and answers.

• Strictly avoid code for describing a complex algorithm.

Instead explain how the algorithm works.

• If you cannot manage a problem completely, still provide your

approach or partial solution to earn some points.

• Facts that are known from the course material can be used.

You don’t have to repeat their proofs.

Remark: The number of points is not always “proportional” to the length

or difficulty of a solution, but it may also be influenced by the importance

of the topics and skills.

Good luck!

2

Problem 1 (5 points)

We are given an undirected graph G = (V,E), where every node has a

positive weight, and we are given a integer k. The problem is to find a

connected subgraph H of G with exactly k nodes and with maximum total

weight of the nodes in H. (A subgraph consists of any subset of nodes of

G and of the edges between them. Do not confuse this with the notion of a

connected component.)

An obvious greedy algorithm is: Initially, let H be empty. First put some

node with largest weight in H. In every further step, add to H some node

that is adjacent to some of the nodes that are already in H (such that H

always remains connected). Repeat this step until H has k nodes.

Does this algorithm guarantee the optimal solution (and if so: why?), or can

you present a counterexample?

3

Problem 2 (10 points)

Suppose that B boxes are arranged in a line, and these boxes are indexed

accordingly with positive integers 1, 2, 3, . . . , B. We have n objects in the

boxes with indices x1 < . . . < xn. For some reason we are requested to

store the objects, without changing their order, in such a way that no two

consecutive boxes are used. (In other words, the difference between the

indices of any two boxes containing objects has to be at least 2.) Moreover,

objects can be moved in one direction only, say, only to boxes with larger

indices. We want to move the objects as little as possible. To be precise,

let us denote the indices of the boxes in the solution by y1 < . . . < yn.

The problem is to minimize the cost
∑n

i=1 |yi − xi| under the constraints

yi+1 − yi ≥ 2 and yi ≥ xi for all i. You may assume that B is large enough,

such that there exists a solution.

For example, if n = 6 objects are in the boxes 11, 12, 14, 16, 17, 22, we may

move them to the boxes 11, 13, 15, 17, 19, 22, and the cost of this solution

would be 0 + 1 + 1 + 1 + 2 + 0 = 5.

There is a pretty obvious greedy algorithm that may solve this problem in

general. We describe it in code, because it has only a few lines:

for i := 2 to n do

begin

if xi < xi−1 + 2 then xi := xi−1 + 2;

yi := xi;

end

2.1. How much time does this algorithm take? (Consider arithmetic opera-

tions with integers as elementary operations.) Briefly motivate your answer.

(3 points)

2.2. Prove that, in fact, this greedy algorithm always yields a solution with

minimum cost. – Hint: Compare the greedy solution to a (hypothetical)

better solution and apply a suitable exchange argument or derive a contra-

diction. It may be a good idea to look at the leftmost box where the two

solutions differ. (7 points)

4

Problem 3 (10 points)

Suppose that we have the same situation as in Problem 2, with one important

change: It is allowed to move objects in both directions. Formally: Given n

integers x1 < . . . < xn, the problem is to find integers y1 < . . . < yn so as to

minimize the cost
∑n

i=1 |yi−xi| under the constraints yi+1− yi ≥ 2 for all i.

In the above example, the 6 objects in the boxes 11, 12, 14, 16, 17, 22 may

now be moved to the boxes 10, 12, 14, 16, 18, 22, and the cost of this solution

would be only 1 + 0 + 0 + 0 + 1 + 0 = 2.

So this additional degree of freedom can lower the costs but it also makes it

more difficult to compute an optimal solution. Greedy approaches seem to

fail, and the next natural step is to try dynamic programming. (We do not

claim that this yields already the fastest possible algorithm, but at least it

works.)

Specifically, we define the following function: Let OPT (j, b) be the smallest

possible cost of a solution y1 < . . . < yj for the first j objects that uses only

the first b boxes (that is, yj ≤ b). We may formally define OPT (j, b) := ∞
if no solution exists at all.

3.1. Derive a formula that allows to compute all values OPT (j, b). Explain

why your formula is correct. – Hint: Certainly your formula must use the

given positions xj somehow, otherwise it cannot work. (6 points)

3.2. Remember that B denotes the total number of boxes. Give (and moti-

vate) a time bound of the dynamic programming algorithm that is based on

your formula from 3.1. It should be polynomial in n and B. But you are not

expected to describe the whole algorithm, with initializations, backtracing,

and so on. (4 points)

5

Problem 4 (10 points)

The currency of some country exists as coins of values c1, . . . , cn, where the

ci are integers (positive, of course!) with c1 < . . . < cn. That is, we assune

that the values are already sorted in increasing order.

We want to pay a certain amount m of money, and figure out whether the

exact amount m can be paid with k = 4 coins. Note that some of these

coins may have equal values.

The problem with k = 2 coins can be solved in O(n) time. You can use this

result here without proof. (It was the subject of an assignment, but it was

presented there as a different story: renting rooms in a warehouse.)

The problem with k = 4 coins can be naively solved in O(n4) time: Just

compute all O(n4) possible sums of 4 values and check whether some of them

equals m.

4.1. Give an algorithm for k = 4 that needs only O(n2 log n) time. – Hint:

Divide the problem in two simpler problems and combine their solutions in

a suitable way. (However this is not divide-and-conquer, as no recursion will

be needed.) (8 points)

4.2. Why can’t we simply use the dynamic programming algorithm for

Subset Sum, in order to achieve a time bound as in 4.1? (2 points)

6

Problem 5 (7 points)

A construction company gets the job to erect a number of buildings along

a street of length s. There exist only n prefabricated buildings, each with a

given length li and a given height hi, for i = 1, . . . , n. Their widths (in the

direction orthogonal to the street) are all the same, hence the space (living

space, office space, or whatever) in the buildings is proportional to both

li and hi. The company can choose among these n available prototypes,

and each prototype can be used at most once. The sum of lengths of the

buildings must not exceed the length of the street. The goal is to maximize

the total space in the buildings.

Is the problem of an optimal choice of buildings solvable in polynomial

time (in n) or is it NP-complete? Give either a polynomial-time algorithm

or a reduction from a known NP-complete problem. Of course, only one

of these options can be correct. In any case: Describe your algorithm or

reduction precisely and completely, not only in vague terms, and explain its

correctness.

7

Problem 6 (8 points)

In one of the assignments we defined the Half-Half Subset Sum problem: We

are given n integers w1, . . . , wn, and the problem asks whether some subset

of them has the sum
∑n

i=1wi/2. This problem is NP-complete. You can use

this result here without proof.

Now suppose that we have n objects of sizes w1, . . . , wn, where n is an even

number, and the wi are non-negative integers. We want to divide these

objects among two persons, such that each person gets exactly n/2 objects

of total size
∑n

i=1wi/2. (Note that these are two conditions: Give both

persons the same number of objects AND the same total size.)

Prove that this problem is also NP-complete, by a reduction from Half-Half

Subset Sum. – Hint to get started: Create a suitable number of additional

“dummy” objects of size 0. Do not forget that a reduction requires an

equivalence proof, besides the construction of an instance.

Problem 7 (10 points)

Let G = (V,E) be a directed acyclic graph (DAG) with n nodes and m

edges, where every edge has some given positive weight. Furthermore, let

s, t ∈ V be two nodes. We wish to find a directed path from s to t, such that

the minimum weight of the edges on this path is maximized. (This objective

is quite different from both the shortest and the longest path problem.)

Give an algorithm that solves this problem in O(n+m) time. And as usual,

motivate all claims.

To avoid a possible trap: The problem cannot be solved via spanning trees;

this method works only for undirected graphs and it also takes more than

linear time.

8

Solutions (attached after the exam)

1. One counterexample is a path of 4 nodes, with weights 4, 1, 3, 3, and

k = 2. The greedy algorithm would start with 4, and then it is forced to

add 1. But the optimal solution would be 3 + 3. (5 points)

2.1. It takes O(n) time, because it consists of only one loop, which in every

step performs a constant number of additions and comparisons of numbers.

(3 points)

2.2. The intuitive reason is that the greedy algoruthm never moves an object

more than necessary to the right. One possible formal way to write down the

proof is proposed here: Let y1 < . . . < yn be the greedy solution, and assume

there is a better solution z1 < . . . < zn. Since
∑n

i=1 |zi−xi| <
∑n

i=1 |yi−xi|,
there must exist an index j where zj < yj . Let j be the smallest such

index. This means yi ≤ zi for all i < j. We have zj−1 + 2 ≤ zj , hence

yj−1 + 2 ≤ zj−1 + 2 ≤ zj ≤ yj − 1. This further implies yj−1 + 3 ≤ yj . But

the greedy algorithm chooses yj > yj−1 + 2 only if the j-th object is not

moved, that is, if yj = xj . But since zj < yj , we conclude zj < xj , thus, the

assumed better solution is not valid. (7 points)

3.1. Let y denote the new position of object j. Moving the object from box

xj to box y adds |y − xj | to the cost. Moreover, we can combine this move

with the best solution for the first j − 1 objects that uses at most y − 2

boxes. This shows: OPT (j, b) = miny≤b(|y − xj |+ OPT (j − 1, y − 2)).

(6 points)

3.2. We must compute OPT (n,B). To this end we must compute nB values

OPT (j, b). Every such calculation performs O(B) arithmetic operations

with integers, and table look-ups of earlier values. Hence the time bound is

simply O(nB2). (4 points)

4.1. First compute all possible sums of 2 values. We call them pairwise sums.

This can be done naively in O(n2) time. Then sort all pariwise sums, which

takes O(n2 log(n2)) = O(n2 log n) time. Clearly, every sum of 4 values is

the sum of two pairwise sums. Hence we can now apply the already existing

O(n)-time algorithm, but instead of n numbers we have to deal with O(n2)

numbers (the pairwise sums computed before). Therefore this part takes

O(n2) time. The total time complexity is O(n2 log n + n2) = O(n2 log n).

(8 points)

9

4.2. Possible answers: Its time bound depends on the values to be added,

not only on the number n of items, and it is not a polynomial in (only) n.

We may use it to compute all sums of k values, but the time would not be

better than the naive O(nk). (2 points)

5. The problem is NP-complete, which can be shown by a reduction from

Knapsack. (Actually, the reduction is merely a translation of one problem

into another.) Consider any instance of Knapsack, with n items of weights

wi and values vi, and with capacity W . We construct an instance of our

“building problem” as follows. Let s := W and li := wi. We want the value

vi to be proportional to lihi = wihi, therefore we set hi := vi/wi. (Without

loss of generality, our proportionality factor is 1.) Now it is obvious, for

any threshold t, that some subset of items with total value at least t fits in

the knapsack, if and only if some subset of buildings has a total length not

exceeding s and provides space at least t. (7 points)

6. Given an instance x of Half-Half Subset Sum with n integers w1, . . . wn,

we construct an instance y of the new problem, with the same integers and

additionally wn+1 = . . . = w2n = 0. The number of objects is 2n (rather

than n), hence each person must get n objects. If x has a solution, we

first divide the “real” objects according to this solution. Then we divide

the “dummy” objects such that both persons have n objects. Hence y has

a solution. Conversely, if y has a solution, then x has a solution as well,

because the “dummy” objects do not matter here. (8 points)

7. First we coonstruct a topological order in O(n + m) time. We may

assume that s and t is the first and last node, respectively, because other

nodes cannot be on any path from s to t. So let v1 = s and vn = t,

possibly with a reduced n. Next define OPT (j) as the largest number w

such that there is a directed path from v1 to vj where all edges have a

weight at least w. Let w(i, j) denote the weight of the edge (vi, vj). Then

OPT (j) = max{min{OPT (i), w(i, j)}| (vi, vj) ∈ E}. Explanation: Every

path to vj has some last edge (vi, vj). We can take an optimal path to vi.

If OPT (i) > w(i, j), then the last edge lowers the smallest weight on the

path to w(i, j), otherwise the smallest weight remains the same. Finally we

take the best possible vi by maximizing over all vi. The time is O(n + m)

in total, because every edge is considered only once. Backtracing is done in

the standard way. (10 points)

10

